2、0.002006用科学记数法表示为 ( )
1、下列各点中,在第三象限的点是 ( )
A.(2,4) B.(2,-4) C.(-2,4) D.(-2,-4))
⑶请你选定某一时刻,求出经过三点
、
、
的抛物线的解析式。
⑵试判断
时,以点
为圆心,
为半径的圆与以点
为圆心、
半径的圆的位置关系;除此之外
与
还有其他位置关系吗?如果有,请求出
的取值范围。
⑴在运动开始后的每一时刻一定存在以点
、
、
为顶点的三角形和以点
、
、
为顶点的三角形吗?如果存在,那么以点
、
、
为顶点的三角形和以点
、
、
为顶点的三角形相似吗?以点
、
、
为顶点的三角形和以点
、
、
为顶点的三角形会同时成为等腰直角三角形吗?请分别说明理由。
27、在平面直角坐标系中(单位长度:
、
两点的坐标分别为
,
,点
从点
开始以
运动,同时点
从点
开始以
运动。
⑶点
是第二象限内到
轴、
轴的距离的比为5:2的点,如果点
在⑵中的抛物线上,且它与点
在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点
,使
的周长最小?若存在,求出点
的坐标;若不存在,请说明理由。
⑵点
是抛物线与
轴的交点,点
是抛物线上的一点,且以
为一底的梯形
的面积为9,求此抛物线的解析式。
⑴求抛物线与
轴的另一个交点
的坐标。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com