精英家教网 > 小学数学 > 题目详情
明明,亮亮,军军三人都参加了数学竞赛,他们共解出了100道题,每人都解出了其中的60道题目,若三个人都解出来的题称为基础题;只有两个人解出来的题称为中等题;只有一个人解出来的题称为难题,则在他们解出的100道题中,难题的数量比基础题的数量
(填:多或少)
20
20
道.
分析:根据“他们共解出了100道题,”可得难+中+基=100…①,根据“每人都解出了其中的60道题目,”可得60×3-(中+3基)+基=100②,然后运用代入法:①②相减,整理即可得出结论.
解答:解:根据题意得出数量关系式:
难+中+基=100….①
60×3-(中+3基)+基=100
180-中-2基=100
中+2基=80…..②
①②相减可得:
难-基=100-80=20题
即难题比基础题多20题.
故答案为:多,20.
点评:本题主要考查了容斥原理,正确确定解题思路,转化为求列出数量关系式是解题的关键.
练习册系列答案
相关习题

科目:小学数学 来源: 题型:

亮亮、明明、军军三位小朋友随父母参观北京颐和园,由于天气炎热,他们三人去同一个冷饮店买饮料,如果他们三人的行走速度相同,哪位小朋友最先买到饮料.画一画,并说明理由.

查看答案和解析>>

同步练习册答案