精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD为一个矩形纸片,AB=3,BC=2,动点P自D点出发沿DC方向运动至C点后停止,△ADP以直线AP为轴翻折,点D落在点D1的位置,设DP=x,△AD1P与原纸片重叠部分的面积为y.

(1)当x为何值时,直线AD1过点C?

(2)当x为何值时,直线AD1过BC的中点E?

(3)求出y与x的函数表达式.

(1);(2);(3) 【解析】试题分析:(1)根据折叠得出AD=AD1=2,PD=PD1=x,∠D=∠AD1P=90°,在Rt△ABC中,根据勾股定理求出AC,在Rt△PCD1中,根据勾股定理得出方程,求出即可; (2)连接PE,求出BE=CE=1,在Rt△ABE中,根据勾股定理求出AE,求出AD1=AD=2,PD=PD1=x,D1E=﹣2,PC=3﹣x,在Rt△PD1E和Rt△PC...
练习册系列答案
相关习题

科目:初中数学 来源:2017-2018学年福建省龙岩市上杭县城区片三校七年级(上)联考数学试卷 题型:填空题

轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h,若船在静水中速度为26km/h,水流速度为2km/h,则A港和B港相距_____km.

504 【解析】试题分析:设轮船从A港顺流行驶到B港所需的时间为t,则从B港逆流返回A港的时间为t+3,因船速为26千米/小时,水速为2千米/时,则顺流速度为26+2=28km/h,逆流速度为26-2=24km/h,则有28t=24(t+3),解得t=18,所以A港和B港的距离为28×18=504km.

查看答案和解析>>

科目:初中数学 来源:吉林省四平市 2017-2018学年第一学期八年级数学期末综合检测卷 题型:解答题

通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例.

原题:如图①,点分别在正方形的边上, ,连接,则,试说明理由.

(1)思路梳理

因为,所以把绕点逆时针旋转90°至,可使 重合.因为,所以,点共线.

根据 ,易证 ,得.请证明.

(2)类比引申

如图②,四边形中, ,点分别在边上, .若都不是直角,则当满足等量关系时, 仍然成立,请证明.

(3)联想拓展

如图③,在中, ,点均在边上,且.猜想应满足的等量关系,并写出证明过程.

(1)SAS,△AFE;(2);(3). 【解析】试题分析:(1)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,再证明△AFG≌△AFE进而得到EF=FG,即可得EF=BE+DF; (2)∠B+∠D=180°时,EF=BE+DF,与(1)的证法类同; (3)根据△AEC绕点A顺时针旋转90°得到△ABE′,根据旋转的性质,可知△AEC≌△ABE′得到BE′=EC...

查看答案和解析>>

科目:初中数学 来源:吉林省四平市 2017-2018学年第一学期八年级数学期末综合检测卷 题型:填空题

如果等腰三角形的底角是50°,那么这个三角形的顶角的度数是___________

80° 【解析】试题解析:180°-50°×2 =180°-100° =80°. 故这个三角形的顶角的度数是80°.

查看答案和解析>>

科目:初中数学 来源:吉林省四平市 2017-2018学年第一学期八年级数学期末综合检测卷 题型:单选题

在△ABC中,∠A=70°,∠B=55°,则△ABC是(  )

A. 钝角三角形 B. 等腰三角形

C. 等边三角形 D. 等腰直角三角形

B 【解析】【解析】 ∵在△ABC中,∠A=70°,∠B=55°,∴∠C=180°﹣∠A﹣∠B=55°,∴∠B=∠C,∴△ABC是等腰三角形.故选B.

查看答案和解析>>

科目:初中数学 来源:山东省济南市2018届九年级1月月考数学试卷 题型:填空题

如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D, 其图象与x轴的交点A、B的横坐标分别为﹣1,3.与y轴负半轴交于点C,当a=时,△ABD是_______三角形;要使△ACB为等腰三角形,则a值为______

等腰直角 或 【解析】【解析】 如图1,∵二次函数y=ax2+bx+c(a>0)图象与x轴的交点A、B的横坐标分别为﹣1,3,a=,∴二次函数为y=(x+1)(x﹣3),整理得y=x2﹣x﹣,∴y=(x﹣1)2﹣2,∴顶点D(1,﹣2),作DE⊥AB于E,∴DE=2,DE垂直平分AB,∵AB=3+1=4,∴AE=DE=BE,∴∠DAB=∠ADE,∠ABD=∠BDE,∵AD=BD,∴∠DAB...

查看答案和解析>>

科目:初中数学 来源:山东省济南市2018届九年级1月月考数学试卷 题型:单选题

.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是(  )

A. 1个 B. 2个 C. 3个 D. 4个

C 【解析】【解析】 ∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确; ∵对称轴是直线x=﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误; ∵把x=1代入抛物线得:y=a+b+c<0,∴2a+2b+2c...

查看答案和解析>>

科目:初中数学 来源:福建省汀东教研片六校2018届九年级10月月考数学试卷 题型:解答题

某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,

(1)每轮感染中平均一台电脑会感染几台电脑?

(2)若该病毒得不到有效控制,第3轮感染后,被感染的电脑会不会超过700台?说明理由

8台;会超过700台. 【解析】试题分析:(1)设每轮感染中平均一台电脑会感染台电脑,根据题意列出方程,求出方程的解即可; (2)求出3轮感染后被感染的电脑台数,再比较大小即可. 试题解析:(1)设每轮感染中平均一台电脑会感染台电脑,则依题意得: 整理得: 解得: (不合题意,舍)∴; (2)3轮感染后,被感染的电脑有

查看答案和解析>>

科目:初中数学 来源:四川省绵阳市三台县2018届九年级(上)第一学月数学试卷 题型:单选题

方程(x﹣3)2=(x﹣3)的根为(  )

A. 3 B. 4 C. 4或3 D. ﹣4或3

C 【解析】试题分析:由,移项得: ,提公因式得: , ∴, .故选C.

查看答案和解析>>

同步练习册答案