精英家教网 > 初中数学 > 题目详情

如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则的值为________.

【解析】∵折叠, ∴, , ∵四边形为矩形, ∴, ∴ ∴, 设与相交于点,则, ∴, 即, , ∵, ∴, ∴, 设, ,则, 中, , ∴, , ∴.
练习册系列答案
相关习题

科目:初中数学 来源:福建省建瓯市2018届九年级数学上册期末测试卷 题型:单选题

如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0).下列结论:①ab<0;②b2>4a;③0<a+b+c<2;④0<b<1;⑤当x>-1时,y>0.其中正确结论的个数是( )

A. 5个 B. 4个 C. 3个 D. 2个

B 【解析】由抛物线的对称轴x=-在y轴右侧,可以判定a、b异号,由此确定①正确; 由抛物线与x轴有两个交点得到b2-4ac>0,又抛物线过点(0,1),得出c=1,由此判定②正确; 由a-b+c=0,及b>0得出a+b+c=2b>0;由b<1,c=1,a<0,得出a+b+c<a+1+1<2,由此判定③正确; 由抛物线过点(-1,0),得出a-b+c=0,即a=b-1,由a<0得出...

查看答案和解析>>

科目:初中数学 来源:2017-2018学年度第一学期海南省海口市七年级数学科期末检测模拟 题型:填空题

如图8,已知AB∥CD,AD∥ BE,∠B=40°,∠E=48°,则∠CDF=_______度.

88 【解析】∵AB∥CD,∠B=40°, ∴∠DCE=∠B=40°. ∵∠E=48°, ∴∠CDE=180°-48°-40°=92°, ∴∠CDF=180°-∠CDE=180°-92°=88°.

查看答案和解析>>

科目:初中数学 来源:江苏省苏州市2017年中考数学二模试卷 题型:解答题

如图,⊙M与菱形ABCD在平面直角坐标系中,点M的坐标为(﹣3,1),点A的坐标为(2,0),点B的坐标为(1,﹣),点D在x轴上,且点D在点A的右侧.

(1)求菱形ABCD的周长;

(2)若⊙M沿x轴向右以每秒2个单位长度的速度平移,菱形ABCD沿x轴向左以每秒3个单位长度的速度平移,设菱形移动的时间为t(秒),当⊙M与AD相切,且切点为AD的中点时,连接AC,求t的值及∠MAC的度数;

(3)在(2)的条件下,当点M与AC所在的直线的距离为1时,求t的值.

【答案】(1)菱形的周长为8;(2)t=,∠MAC=105°;(3)当t=1﹣或t=1+时,圆M与AC相切.

【解析】试题分析:(1)过点B作BE⊥AD,垂足为E.由点A和点B的坐标可知:BE=,AE=1,依据勾股定理可求得AB的长,从而可求得菱形的周长;(2)记 M与x轴的切线为F,AD的中点为E.先求得EF的长,然后根据路程=时间×速度列出方程即可;平移的图形如图3所示:过点B作BE⊥AD,垂足为E,连接MF,F为 M与AD的切点.由特殊锐角三角函数值可求得∠EAB=60°,依据菱形的性质可得到∠FAC=60°,然后证明△AFM是等腰直角三角形,从而可得到∠MAF的度数,故此可求得∠MAC的度数;(3)如图4所示:连接AM,过点作MN⊥AC,垂足为N,作ME⊥AD,垂足为E.先求得∠MAE=30°,依据特殊锐角三角函数值可得到AE的长,然后依据3t+2t=5-AE可求得t的值;如图5所示:连接AM,过点作MN⊥AC,垂足为N,作ME⊥AD,垂足为E.依据菱形的性质和切线长定理可求得∠MAE=60°,然后依据特殊锐角三角函数值可得到EA=,最后依据3t+2t=5+AE.列方程求解即可.

试题解析:( )如图1所示:过点,垂足为

∵四边形为菱形,

∴菱形的周长

)如图2所示,⊙轴的切线为中点为

,且中点,

解得

平移的图形如图3所示:过点

垂足为,连接为⊙切点,

∵由()可知,

∵四边形是菱形,

切线,

的中点,

是等腰直角三角形,

)如图4所示:连接,过点作,垂足为,作,垂足为

∵四边形为菱形,

是圆的切线

如图5所示:连接,过点作,垂足为,作,垂足为

∵四边形为菱形,

是圆的切线,

综上所述,当时,圆相切.

点睛:此题是一道圆的综合题.圆中的方法规律总结:1、分类讨论思想:研究点、直线和圆的位置关系时,就要从不同的位置关系去考虑,即要全面揭示点、直线和元的各种可能的位置关系.这种位置关系的考虑与分析要用到分类讨论思想.1、转化思想:(1)化“曲面”为“平面”(2)化不规则图形面积为规则图形的面积求解.3、方程思想:再与圆有关的计算题中,除了直接运用公式进行计算外,有时根据图形的特点,列方程解答,思路清楚,过程简捷.

【题型】解答题
【结束】
28

如图1,在平面直角坐标系中,直线l与x轴、y轴分别交于点B(4,0)、C(0,3),点A为x轴负半轴上一点,AM⊥BC于点M交y轴于点N(0, ).已知抛物线y=ax2+bx+c经过点A,B,C.

(1)求抛物线的函数式;

(2)连接AC,点D在线段BC上方的抛物线上,连接DC,DB,若△BCD和△ABC面积满足S△BCD= S△ABC, 求点D的坐标;

(3)如图2,E为OB中点,设F为线段BC上一点(不含端点),连接EF.一动点P从E出发,沿线段EF以每秒3个单位的速度运动到F,再沿着线段PC以每秒5个单位的速度运动到C后停止.若点P在整个运动过程中用时最少,请直接写出最少时间和此时点F的坐标.

(1)y=﹣x2+x+3(2)D点坐标为(1, )或(3,3)(3)点P在整个运动过程中所用的最少时间2××2=3秒,此时点F的坐标为(2, ) 【解析】试题分析:(1)根据点N(0, ),得到ON=,再证明△AON∽△COB,利用相似比计算出OA=1,得到A(-1,0),然后利用交点式可求出抛物线解析式为y=-x2+x+3; (2)先利用待定系数法求出直线BC的解析式为y=-x+3,...

查看答案和解析>>

科目:初中数学 来源:江苏省苏州市2017年中考数学二模试卷 题型:解答题

先化简,再求值: ,其中

【解析】试题分析:分析已知代数式,利用因式分解可把化为,根据分式加减法对进行运算可得;接下来根据除以一个数等于乘以这个数的倒数把原式化为,约分即得,再把x=代入进行计算,即得答案. 试题解析: . 当时,上式.

查看答案和解析>>

科目:初中数学 来源:江苏省苏州市2017年中考数学二模试卷 题型:填空题

实数范围内有意义,则的取值范围是__________.

【解析】由题意得 得出 .故答案为: .

查看答案和解析>>

科目:初中数学 来源:江苏省苏州市2017年中考数学二模试卷 题型:单选题

下列计算中,正确的是(  )

A. 2a+3b=5ab B. (3a3)2=6a6 C. a6÷a2=a3 D. ﹣3a+2a=﹣a

D 【解析】试题分析:A、不是同类项,无法计算;B、原式=9a6;C、同底数幂相除,底数不变,指数相减,原式=;D、是同类项,能够合并,正确.故答案选D.

查看答案和解析>>

科目:初中数学 来源:山东省德州市2018届九年级上期末模拟数学试卷 题型:填空题

已知一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,则(x1﹣1)(x2﹣1)的值是_____.

-4 【解析】∵一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2, ∴x1+x2=3,x1x2=-2, ∴(x1-1)(x2-1)=x1x2-x2-x1+1=x1x2-(x1+x2)+1=-2-3+1=-4, 故答案为:-4.

查看答案和解析>>

科目:初中数学 来源:2017年海南省海口市中考数学模拟试卷 题型:解答题

一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?

打开丙管后小时可注满水池. 【解析】设打开丙管后x小时可注满水池.等量关系为:甲注水量+乙注水量-丙排水量=1. 据此列出方程并解答. 【解析】 设打开丙管后x小时可注满水池, 由题意得,( +)(x+2)﹣x =1, 解这个方程, (x+2)﹣=1, 21x+42﹣8x=72, 13x=30, 解得x=. 答:打开丙管后小时可注满水池. ...

查看答案和解析>>

同步练习册答案