精英家教网 > 初中数学 > 题目详情

如图,一场篮球赛中,篮球运动员跳起投篮,已知球出手时离地面高2.2m,与篮圈中心的水平距离为8m,当球出手后水平距离为4m时达到最大高度4m,篮圈运行的轨迹为抛物线的一部分,篮圈中心距离地面3m,运动员发现未投中,若假设出手的角度和力度都不变,要使此球恰好通过篮圈中心,运动员应该跳得(  )

A. 比开始高0.8m B. 比开始高0.4m

C. 比开始低0.8m D. 比开始低0.4m

A 【解析】利用二次函数图象对称性知,篮圈和篮球出手的高度一样,所以人需要比开始高0.8m.故选A.
练习册系列答案
相关习题

科目:初中数学 来源:2017年贵州省中考数学二模试卷 题型:单选题

济南某中学足球队的18名队员的年龄如表所示:

年龄(单位:岁)
 


 

12
 


 

13
 


 

14
 


 

15
 

人数
 


 

3
 


 

5
 


 

6
 


 

4
 

这18名队员年龄的众数和中位数分别是( )

A.13岁,14岁 B.14岁,14岁 C.14岁,13岁 D.14岁,15岁

B 【解析】试题分析:∵济南某中学足球队的18名队员中,14岁的最多,有6人, ∴这18名队员年龄的众数是14岁; ∵18÷2=9,第9名和第10名的成绩是中间两个数, ∵这组数据的中间两个数分别是14岁、14岁, ∴这18名队员年龄的中位数是:(14+14)÷2=28÷2=14(岁) 综上,可得这18名队员年龄的众数是14岁,中位数是14岁. 故选:B....

查看答案和解析>>

科目:初中数学 来源:山东省2018届九年级12月月考数学试卷 题型:填空题

如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是_____cm.

10 【解析】试题分析:先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解. 如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm. 连接OC,交AB于D点.连接OA. ∵尺的对边平行,光盘与外边缘相切, ∴OC⊥AB. ∴AD=4cm. 设半径为Rcm,则R2=42+(R﹣2)2, ...

查看答案和解析>>

科目:初中数学 来源:湖北省武汉市汉阳区2018届九年级(上)期中数学试卷(解析版) 题型:解答题

某商场销售一种产品,每件产品的成本为2400元,销售单价定位3000元,该商场为了促销,规定客户一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元;

(1)设一次购买这种产品x(x≥10)件,商场所获的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围;

(2)在客户购买产品的件数尽可能少的前提下,商场所获的利润为12000元,此时该商场销售了多少件产品?

(3)填空:该商场的销售人员发现,当客户一次购买产品的件数在某一个区间时,会出现随着一次购买的数量的增多,商场所获的利润反而减少这一情况,客户一次购买产品的数量x满足的条件是   (其它销售条件不变)

(1);(2)30;(3)35<x≤50. 【解析】试题分析:(1)利用单价利润件数=利润列函数关系式,按照不同条件要列分段函数,注意求定义域.(2)令函数值为12000,解方程.(3)求二次函数的增减性, y随x的增大而减小. 试题解析: 【解析】 (1)当一次购买这种产品x(x≥10)件时,销售单价为3000﹣10(x﹣10),由题意可知,3000﹣10(x﹣10)≥260...

查看答案和解析>>

科目:初中数学 来源:湖北省武汉市汉阳区2018届九年级(上)期中数学试卷(解析版) 题型:填空题

如图,用篱笆靠墙围成矩形花圃ABCD,墙可利用的最大长度为15m,一面利用旧墙,其余三面用篱笆围,篱笆长为24m,若围成的花圃面积为40m2时,平行于墙的BC边长为_____m.

4. 【解析】x()=40, 解得x1=20(舍去),x2=4. BC边长为4m. 故答案为4.

查看答案和解析>>

科目:初中数学 来源:湖北省武汉市汉阳区2018届九年级(上)期中数学试卷(解析版) 题型:单选题

下面四个手机应用软件图标中是轴对称图形的是 ( ).

A. B. C. D.

D 【解析】选项D是轴对称图形,故选D.

查看答案和解析>>

科目:初中数学 来源:江苏省扬州市2016届九年级下学期二模数学试卷 题型:解答题

如图,在平面直角坐标系中,△AOB的三个顶点的坐标分别是A(-4,3),B(-6,0), O是原点.点M是OB边上异于O,B的一动点,过点M作MN//AB,点P是AB边上的任意点,连接AM,PM,PN,BN.设点.

(1)求出OA所在直线的解析式,并求出点M的坐标为(-1,0)时,点N的坐标.

(2)若 = 时,求此时点N的坐标.

(1);N(, );(2)N(,2) 【解析】试题分析:(1)设y=kx(k≠0),将点A的坐标代入解析式求出k的值,写出解析式;(2)因为MN//AB,所以N点的横坐标与A点的横坐标之比为,又因为A的坐标已知,故可求出N点的横坐标,将N点的横坐标代入直线OA的解析式,即可求出N的纵坐标;(3)因为MN//AB,根据平行线间的距离相等,所以S△PMN=S△BMN,S△ANB=S△ABM,所以...

查看答案和解析>>

科目:初中数学 来源:江苏省扬州市2016届九年级下学期二模数学试卷 题型:单选题

如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点.作△ABC的外接圆⊙O,则弧的长为( )

A. B. C. D.

A 【解析】 连接OC,根据勾股定理不难求出AC=、BC=、AB=2, ∵AC=BC,点O 为AB中点, ∴CO⊥AB, ∴∠COB=90°, ∵r=AB=, ∴弧AB的长为: =π. 故选A.

查看答案和解析>>

科目:初中数学 来源:2017年海南省中考数学模拟试卷 题型:单选题

小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是( )

A.我爱美 B.宜晶游 C.爱我宜昌 D.美我宜昌

C. 【解析】 试题分析:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),因为x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,宜,昌,所以结果呈现的密码信息可能是“爱我宜昌”,故答案选C.

查看答案和解析>>

同步练习册答案