科目: 来源:2008年福建省厦门市初中毕业升学统一考试、数学试卷 题型:059
已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连结AF和CE.
(1)求证:四边形AFCE是菱形;
(2)若AE=10 cm,△ABF的面积为24 cm2,求△ABF的周长;
(3)在线段AC上是否存在一点P,使得2AE2=AC·AP?
若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.
查看答案和解析>>
科目: 来源:2008年福建省南平市初中毕业升学统一考试、数学试卷 题型:059
(1)如图1,图2,图3,在△ABC中,分别以AB,AC为边,向△ABC外作正三角形,正四边形,正五边形,BE,CD相交于点O.
①如图1,求证:△ABE≌△ADC;
②探究:如图1,∠BOC=________°;
如图2,∠BOC=________°;
如图3,∠BOC=________°.
(2)如图4,已知:AB,AD是以AB为边向△ABC外所作正n边形的一组邻边;AC,AE是以AC为边向△ABC外所作正n边形的一组邻边.BE,CD的延长相交于点O.
①猜想:如图4,∠BOC=________°(用含n的式子表示);
②根据图4证明你的猜想.
查看答案和解析>>
科目: 来源:2008年福建省南平市初中毕业升学统一考试、数学试卷 题型:059
如图,平面直角坐标系中有一矩形纸片OABC,O为原点,点A,C分别在x轴,y轴上,点B坐标为(m,
)(其中m>0),在BC边上选取适当的点E和点F,将△OCE沿OE翻折,得到△OGE;再将△ABF沿AF翻折,恰好使点B与点G重合,得到△AGF,且∠OGA=90°.
(1)求m的值;
(2)求过点O,G,A的抛物线的解析式和对称轴;
(3)在抛物线的对称轴上是否存在点P,使得△OPG是等腰三角形?若不存在,请说明理由;若存在,直接答出所有满足条件的点P的坐标(不要求写出求解过程).
提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=-
,顶点坐标是
查看答案和解析>>
科目: 来源:2008年甘肃省白银等九市初中毕业升学统一考试、数学试卷 题型:059
如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M、N,直线m运动的时间为t(秒).
(1)点A的坐标是________,点C的坐标是________;
(2)当t=________秒或________秒时,MN=
AC;
(3)设△OMN的面积为S,求S与t的函数关系式;
(4)探求(3)中得到的函数S有没有最大值?若有,求出最大值;若没有,要说明理由.
查看答案和解析>>
科目: 来源:2008年湖南省益阳市初中毕业升学统一考试、数学试卷 题型:059
两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1.固定△ABC不动,将△DEF进行如下操作:
(1)如图1,△DEF沿线段AB向右平移(即D点在线段AB内移动),连结DC、CF、FB,四边形CDBF的形状在不断的变化,但它的面积不变化,请求出其面积.
(2)如图2,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.
(3)如图3,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连结AE,请你求出sinα的值.
查看答案和解析>>
科目: 来源:2008年湖南省益阳市初中毕业升学统一考试、数学试卷 题型:059
△ABC是一块等边三角形的废铁片,利用其剪裁一个正方形DEFG,使正方形的一条边DE落在BC上,顶点F、G分别落在AC、AB上.
Ⅰ.证明:△BDG≌△CEF;
Ⅱ.探究:怎样在铁片上准确地画出正方形.
小聪和小明各给出了一种想法,请你在Ⅱa和Ⅱb的两个问题中选择一个你喜欢的问题解答.如果两题都解,只以Ⅱa的解答记分.
Ⅱa.小聪想:要画出正方形DEFG,只要能计算出正方形的边长就能求出BD和CE的长,从而确定D点和E点,再画正方形DEFG就容易了.
设△ABC的边长为2,请你帮小聪求出正方形的边长(结果用含根号的式子表示,不要求分母有理化).
Ⅱb.小明想:不求正方形的边长也能画出正方形.具体作法是:
①在AB边上任取一点
,如图作正方形
;
②连结B
并延长交AC于F;
③作FE∥
交BC于E,FG∥
交AB于G,GD∥
交BC于D,则四边形DEFG即为所求.
你认为小明的作法正确吗?说明理由.
查看答案和解析>>
科目: 来源:2008年湖南省湘西自治州初中毕业升学统一考试、数学试卷 题型:059
已知抛物线y=-
(x+2)2+k与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,C点在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根.
(1)求A、B、C三点的坐标;
(2)在平面直角坐标系内画出抛物线的大致图象并标明顶点坐标;
(3)连AC、BC,若点E是线段AB上的一个动点(与A、B不重合),过E作EF∥AC交BC于F,连CE,设AE=m,△CEF的面积为S,求S与m的函数关系式,并写出自变量m的取值范围.
(4)在(3)的基础上说明S是否存在最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.
查看答案和解析>>
科目: 来源:2008年湖南省湘西自治州初中毕业升学统一考试、数学试卷 题型:059
如图,平面直角坐标系中有一个边长为2的正方形AOBC,M为OB的中点,将△AOM沿直线AM对折,使O点落在
处,连结
,过
点作
于N.
(1)写出点A、B、C的坐标;
(2)判断△AOM与△
是否相似,若是,请给出证明;
(3)求
点的坐标.
查看答案和解析>>
科目: 来源:2008年湖南省湘潭市初中毕业升学统一考试、数学试题及答案 题型:059
已知抛物线y=ax2+bx+c经过点A(5,0)、B(6,-6)和原点.
(1)求抛物线的函数关系式;
(2)若过点B的直线y=kx+
与抛物线相交于点C(2,m),请求出△OBC的面积S的值.
(3)过点C作平行于x轴的直线交y轴于点D,在抛物线对称轴右侧位于直线DC下方的抛物线上,任取一点P,过点P作直线PF平行于y轴交x轴于点F,交直线DC于点E.直线PF与直线DC及两坐标轴围成矩形OFED(如图),是否存在点P,使得△OCD与△CPE相似?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源:2008年湖南省株洲市初中毕业升学统一考试、数学试卷及答案 题型:059
如图(1),在平面直角坐标系中,点A的坐标为(1,-2),点B的坐标为(3,-1),二次函数y=-x2的图象为l1.
(1)平移抛物线l1,使平移后的抛物线过点A,但不过点B,写出平移后的抛物线的一个解析式(任写一个即可).
(2)平移抛物线l1,使平移后的抛物线过A、B两点,记抛物线为l2,如图(2),求抛物线l2的函数解析式及顶点C的坐标.
(3)设P为y轴上一点,且S△ABC=S△ABP,求点P的坐标.
(4)请在图(2)上用尺规作图的方式探究抛物线l2上是否存在点Q,使△QAB为等腰三角形.若存在,请判断点Q共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com