相关习题
 0  294511  294519  294525  294529  294535  294537  294541  294547  294549  294555  294561  294565  294567  294571  294577  294579  294585  294589  294591  294595  294597  294601  294603  294605  294606  294607  294609  294610  294611  294613  294615  294619  294621  294625  294627  294631  294637  294639  294645  294649  294651  294655  294661  294667  294669  294675  294679  294681  294687  294691  294697  294705  366461 

科目: 来源: 题型:解答题

16.已知抛物线y=ax2+bx+8(a≥1)过点D(5,3),与x轴交于点B、C(点B、C均在y轴右侧)且BC=2,直线BD交y轴于点A.
(1)求抛物线的解析式;
(2)在坐标轴上是否存在一点N,使△ABN与△BCD相似?若存在,求出点A、N的坐标;若不存在,请说明理由.
(3)在直线BD上是否存在一点P和平面内一点Q,使以Q、P、B、C四点为顶点的四边形为菱形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

15.完成下面的证明(下划线内补全证明过程,括号内填写推理的依据).
(1)如图1,AB∥CD,∠B+∠D=180°,求证:CB∥DE 
证明:∵AB∥CD(已知)
∴∠B=∠C
∵∠B+∠D=180°(已知)
∴∠C+∠D=180°(等量代换)
∴CB∥DE
(2)如图2,已知DE∥AC,∠A=∠DEF,请证明∠B=∠FEC.
证明:∵DE∥AC(已知)
∴∠A=∠BDE
∵∠A=∠DEF(已知)
∴∠DEF=∠BDE(等量代换)
∴AB∥EF
∴∠B=∠FEC.

查看答案和解析>>

科目: 来源: 题型:解答题

14.(1)$\sqrt{8}$+($\frac{1}{2}$)-1-2sin45°-|1-$\sqrt{2}$|
(2)解分式方程:$\frac{1-x}{x-3}$=$\frac{1}{3-x}$-2.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,已知抛物线y=ax2-x+c的对称轴为直线x=1,与x轴的一个交点为A(-1,0),顶点为B.点C(5,m)在抛物线上,直线BC交x轴于点E.
(1)求抛物线的表达式及点E的坐标;
(2)联结AB,求∠B的正切值;
(3)点G为线段AC上一点,过点G作CB的垂线交x轴于点M(位于点E右侧),当△CGM与△ABE相似时,求点M的坐标.

查看答案和解析>>

科目: 来源: 题型:选择题

12.如果用A表示事件“若a>b,则a+c>b+c”,用P(A)表示“事件A发生的概率”,那么下列结论中正确的是(  )
A.P(A)=1B.P(A)=0C.0<P(A)<1D.P(A)>1

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,正比例函数y=kx经过点A(2,4),AB⊥x轴于点B.
(1)求该正比例函数的解析式;
(2)将△ABO绕点A逆时针旋转90°得到△ADC,求点C的坐标;
(3)试判断点C是否在直线y=$\frac{1}{3}$x+1的图象上,说明你的理由.

查看答案和解析>>

科目: 来源: 题型:选择题

10.如图,△ABC的顶点A,C落在坐标轴上,且顶点B的坐标为(-5,2),将△ABC沿x轴向右平移得到△A1B1C1,使得点B1恰好落在函数y=$\frac{6}{x}$上,若线段AC扫过的面积为48,则点C1的坐标为(  )
A.(3,2)B.(5,6)C.(8,6)D.(6,6)

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,在?ABCD中,AD=4,AB=5,延长AD到点E,连接EC过点B作BF∥CE交AD于点F,交CD的延长线于点G.
(1)求证:四边形BCEF是平行四边形;
(2)当DF=1时,四边形BCEF是正方形,说明理由;
(3)当$\frac{GF}{GD}$=$\frac{4}{5}$时,四边形BCEF是菱形,说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

8.如图,CD∥AB,且CD=$\frac{1}{2}$AB,点E为AB的中点,若四边形ADCE为正方形,则∠B=45°.

查看答案和解析>>

科目: 来源: 题型:选择题

7.在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共50只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复以上步骤,下表为实验的一组统计数据:
摸球的次数n1000150020005000800010000
摸到白球的次数m5829601161295448426010
摸到白球的频率0.5820.640.58050.59080.60530.601
请估算口袋中白球的个数约为(  )
A.20B.25C.30D.35

查看答案和解析>>

同步练习册答案