相关习题
 0  320009  320017  320023  320027  320033  320035  320039  320045  320047  320053  320059  320063  320065  320069  320075  320077  320083  320087  320089  320093  320095  320099  320101  320103  320104  320105  320107  320108  320109  320111  320113  320117  320119  320123  320125  320129  320135  320137  320143  320147  320149  320153  320159  320165  320167  320173  320177  320179  320185  320189  320195  320203  366461 

科目: 来源:2017年海南省中考数学模拟试卷(三) 题型:填空题

分解因式:6ab﹣3a=_____.

3a(2b﹣1) 【解析】试题解析:6ab?3a=3a(2b?1). 故答案为:3a(2b?1).

查看答案和解析>>

科目: 来源:2017年海南省中考数学模拟试卷(三) 题型:填空题

a﹣2b+2=0,则代数式1+2b﹣a的值是_____.

3 【解析】试题解析:∵a?2b+2=0, ∴2b?a=2, ∴1+2b?a=1+2=3, 故答案为:3.

查看答案和解析>>

科目: 来源:2017年海南省中考数学模拟试卷(三) 题型:填空题

如图,F是平行四边形ABCD对角线BD上的点,BF:FD=1:3,则BE:EC=_____.

1:2 【解析】试题解析:∵四边形ABCD是平行四边形, ∴△BEF∽DAF, ∴BE:AD=BF:FD=1:3, ∴BE:BC=1:3, ∴BE:EC=1:2. 故答案为:1:2.

查看答案和解析>>

科目: 来源:2017年海南省中考数学模拟试卷(三) 题型:填空题

如图,⊙O的直径AB=4,BC切⊙O于点B,OC平行于弦AD,OC=5,则AD的长为_____.

【解析】试题解析:∵AB是直径, ∴∠A=∠BOC, ∴cos∠A=cos∠BOC. ∵BC切⊙O于点B, ∴OB⊥BC, 又 故答案为:

查看答案和解析>>

科目: 来源:2017年海南省中考数学模拟试卷(三) 题型:解答题

计算

(1)+16÷(﹣2)3+(2005﹣π)0﹣tan30°

(2)(a﹣b)2+a(2b﹣a)

(1)1(2)b2 【解析】试题分析:(1)运用负整数指数幂,零指数幂,特殊角的三角函数,乘方运算等法则运算即可; (2)运用完全平方公式,单项式乘以多项式运算即可. 试题解析: 原式 原式

查看答案和解析>>

科目: 来源:2017年海南省中考数学模拟试卷(三) 题型:解答题

“五一”期间,某商场搞优惠促销,决定由顾客抽奖确定折扣.某顾客购买甲、乙两种商品,分别抽到七折(按售价的70%销售)和九折(按售价的90%销售),共付款386元,这两种商品原销售价之和为500元.问:这两种商品的原销售价分别为多少元?

甲、乙两种商品的原销售价分别为320元、180元 【解析】试题分析:用二元一次方程组解决问题的关键是找到2个合适的等量关系.设甲、乙两种商品的原销售价格分别为 元,根据两种商品原价为500元,可得方程(1),又根据两种商品打折后的总价为386元,又可得方程(2),由(1)(2)组成方程组,即可得到答案. 试题解析:设甲、乙两种商品的原销售价格分别为元, 依题意得 解得 ...

查看答案和解析>>

科目: 来源:2017年海南省中考数学模拟试卷(三) 题型:解答题

为了庆祝即将到来的2017年元旦,某校举行了书法比赛,赛后整理参赛同学的成绩,并制作成图表如下:

分数段

频数

频率

60≤x<70

30

0.15

70≤x<80

m

0.45

80≤x<90

60

n

90≤x≤100

20

0.1

请根据以上图表提供的信息,解答下列问题:

(1)这次共调查了   名学生;表中的数m=   ,n=   

(2)请在图中补全频数分布直方图;

(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是   

(4)如果比赛成绩在80分以上(含80分)可获得奖励,那么获奖概率是多少?

(1)200,90,0.3(2)图形见解析(3)54°(4)40% 【解析】试题分析:(1)根据的有30人,占0.15,推出总人数=30÷0.15=200人,由此即可解决问题; (2)利用(1)中结论画出条形图即可; (3)根据圆心角=360°×百分比,计算即可; (4)用80分以上的人数除以总人数即可; 试题解析:(1)的有30人,占0.15, ∴总人数=30÷0.15=...

查看答案和解析>>

科目: 来源:2017年海南省中考数学模拟试卷(三) 题型:解答题

城市规划期间,欲拆除一电线杆AB,已知距电线杆AB水平距离14 m的D处有一大坝,背水坡CD的坡度i=1∶2,坝高CF为2 m,在坝顶C处测得杆顶A的仰角为30°,D、E之间是宽为2 m的人行道.

(1)求BF的长;

(2)在拆除电线杆AB时,为确保行人安全,是否需要将此人行道封上?请说明理由.(在地面上,以点B为圆心,以AB长为半径的圆形区域为危险区域,≈1.732,≈1.414)

(1)BF=18m;(2)故需封闭人行道DE,理由见解析. 【解析】试题分析:首先分析图形,根据题意构造直角三角形;本题涉及到两个直角三角形,应利用其公共边构造三角关系,进而可求出答案. 试题解析:∵ ∴DF=1; ∴BF=BD+DF=14+1=15; 过C作CH⊥AB于H; ∴人行道不需要封上.

查看答案和解析>>

科目: 来源:2017年海南省中考数学模拟试卷(三) 题型:解答题

如图1,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.

(1)求证:△DEC≌△EDA;

(2)求DF的值;

(3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形,使其顶点Q落在线段AE上,定点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值.

(1)证明见解析;(2)DF=.(3) PE=时,矩形PQMN的面积最大,最大面积为3. 【解析】试题分析:(1)由矩形和翻折的性质可知AD=CE,DC=EA,根据“SSS”可求得△DEC≌△EDA; (2)根据勾股定理即可求得. (3)由矩形PQMN的性质得PQ∥CA,所以,从而求得PQ,由PN∥EG,得出,求得PN,然后根据矩形的面积公式求得解析式,即可求得. 试题解析...

查看答案和解析>>

科目: 来源:2017年海南省中考数学模拟试卷(三) 题型:解答题

如图所示,二次函数y=ax2﹣x+c的图象经过点A(0,1),B(﹣3, ),A点在y轴上,过点B作BC⊥x轴,垂足为点C.

(1)求直线AB的解析式和二次函数的解析式;

(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;

(3)点N是二次函数图象上一点(点N在AB上方),是否存在点N,使得BM与NC相互垂直平分?若存在,求出所有满足条件的N点的坐标;若不存在,说明理由.

(1)y=﹣x+1;y=﹣x2﹣x+1;(2)当m=﹣时,MN取最大值,最大值为;(3)存在点N,使得BM与NC相互垂直平分,点N的坐标为(﹣1,4) 【解析】试题分析:(1)根据已知点的坐标利用待定系数法即可得出结论; (2)设点N的坐标为 则点M的坐标为 用含的代数式表示出来,结合二次函数的性质即可解决最值问题; (3)假设存在,设点N的坐标为连接,当四边形为菱形时, 与相互垂...

查看答案和解析>>

同步练习册答案