科目: 来源:2017年山东省中考数学二模试卷 题型:解答题
问题背景
在数学活动课上,张老师要求同学们拿两张大小不同的矩形纸片进行旋转变换探究活动.如图 1,在矩形纸片ABCD 和矩形纸片EFGH中,AB=1,AD=2,且FE>AD,FG>AB,点E 是 AD 的中点,矩形纸片 EFGH 以点E 为旋转中心进行逆时针旋转,在旋转过程中会产生怎样的数量关系,提出恰当的数学问题并加以解决.
解决问题
下面是三个学习小组提出的数学问题,请你解决这些问题.
(1)“奋进”小组提出的问题是:如图 1,当 EF 与 AB 相交于点 M,EH 与 BC 相交于点 N 时,求证:EM=EN.
(2)“雄鹰”小组提出的问题是:在(1)的条件下,当 AM=CN 时,AM 与 BM 有怎样的数量关系,请说明理由.
(3)“创新”小组提出的问题是:若矩形 EFGH 继续以点 E 为旋转中心进行逆时针旋转,当
时,请你在图 2 中画出旋转后的示意图,并求出此时 EF 将边 BC 分成的两条线段的长度.
![]()
![]()
查看答案和解析>>
科目: 来源:2017年山东省中考数学二模试卷 题型:解答题
阅读与思考;
婆罗摩笈多是一位印度数学家与天文学家,书写了两部关于数学与天文的书籍,他的一些数学成就在世界数学史上有较高的地位,他的负数及加减法运算仅晚于中国九章算术而他的负数乘除法法则在全世界都是领先的,他还提出了著名的婆罗摩笈多定理,该定理的内容及证明如下:
已知:如图,四边形ABCD内接与圆O对角线AC⊥BD于点M,ME⊥BC于点E,延长EM交CD于F,求证:MF=DF
证明∵AC⊥BD,ME⊥BC
∴∠CBD=∠CME
∵∠CBD=∠CAD,∠CME=∠AMF
∴∠CAD=∠AMF
∴AF=MF
∵∠AMD=90°,同时∠MAD+∠MDA=90°
∴∠FMD=∠FDM
∴MF=DF,即F是AD中点.
![]()
(1)请你阅读婆罗摩笈多定理的证明过程,完成婆罗摩笈多逆定理的证明:
已知:如图1,四边形ABCD内接与圆O,对角线AC⊥BD于点M,F是AD中点,连接FM并延长交BC于点E,求证:ME⊥BC
(2)已知如图2,△ABC内接于圆O,∠B=30°∠ACB=45°,AB=2,点D在圆O上,∠BCD=60°,连接AD 交BC于点P,作ON⊥CD于点N,延长NP交AB于点M,求证PM⊥BA并求PN的长.
(1)证明见解析;(2)证明见解析, PN=1. 【解析】试题分析:(1)由于AC⊥BD,所以∠AMD=90°,∠FAM+∠FDM=90°,由于F是AD的中点,所以AF=MF=DF,从而可证明∠EMC+∠MCB=90°. (2)由圆周角定理得出∠D=∠B=30°,由三角形内角和定理求出∠DAC=45°,得出△APC是等腰直角三角形,∴PA=PC,∠CPD=90°,由(1)的证明过程可知...查看答案和解析>>
科目: 来源:2017年山东省中考数学二模试卷 题型:解答题
如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B两点,(点A在点B的左侧),与直线AC交于点C(2,3),直线AC与抛物线的对称轴l相交于点D,连接BD.
(1)求抛物线的函数表达式,并求出点D的坐标;
(2)如图2,若点M、N同时从点D出发,均以每秒1个单位长度的速度分别沿DA、DB运动,连接MN,将△DMN沿MN翻折,得到△D′MN,判断四边形DMD′N的形状,并说明理由,当运动时间t为何值时,点D′恰好落在x轴上?
(3)在平面内,是否存在点P(异于A点),使得以P、B、D为顶点的三角形与△ABD相似(全等除外)?若存在,请直接写出点P的坐标,若不存在,请说明理由.
![]()
查看答案和解析>>
科目: 来源:湖南省2017-2018学年八年级数学上期末复习检测数学试卷 题型:填空题
如图,△ABC与△ADC中,∠B=∠D=90°,要使△ABC≌△ADC,还需添加的一个条件是________ (写出一个即可).
![]()
查看答案和解析>>
科目: 来源:湖南省2017-2018学年八年级数学上期末复习检测数学试卷 题型:填空题
点(﹣2,﹣3)关于直线x=﹣1的对称点的坐标为________ .
(0,﹣3). 【解析】【解析】 所求点的纵坐标为﹣3,横坐标为﹣2﹣(﹣2)=0,∴点(﹣2,﹣3)关于直线x=﹣1的对称点的坐标为(0,﹣3).故答案为:(0,﹣3).查看答案和解析>>
科目: 来源:湖南省2017-2018学年八年级数学上期末复习检测数学试卷 题型:填空题
已知一个正数的平方根是2x和x﹣6,这个数是________ .
16. 【解析】∵一个正数的平方根是2x和x?6, ∴2x+x?6=0, 解得x=2, ∴这个数的正平方根为2x=4, ∴这个数是16. 故答案为:16.查看答案和解析>>
科目: 来源:湖南省2017-2018学年八年级数学上期末复习检测数学试卷 题型:填空题
将直线y=2x﹣4向上平移5个单位后,所得直线的表达式是________.那么将直线y=2x﹣4沿x轴向右平移3个单位得到的直线方程是________.
y=2x+1 y=2x﹣10 【解析】【解析】 将直线y=2x﹣4向上平移5个单位后,所得直线的表达式是y=2x﹣4+5=2x+1.将直线y=2x﹣4沿x轴向右平移3个单位得到的直线方程是y=2(x-3)﹣4﹣3=2x﹣10; 故答案为:y=2x+1;y=2x﹣10.查看答案和解析>>
科目: 来源:湖南省2017-2018学年八年级数学上期末复习检测数学试卷 题型:填空题
使不等式
成立的最大的整数解是________.
查看答案和解析>>
科目: 来源:湖南省2017-2018学年八年级数学上期末复习检测数学试卷 题型:填空题
如图,△ABC的周长为19cm,AC的垂直平分线DE交AC于点E,E为垂足,AE=3cm,则△ABD的周长为________.
![]()
查看答案和解析>>
科目: 来源:湖南省2017-2018学年八年级数学上期末复习检测数学试卷 题型:填空题
写出一个无解的一元一次不等式组为 ________.
. 【解析】【解析】 根据不等式组解集的口诀:大大小小找不到(无解),可写x≤2,x≥3,即. 故答案为: .查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com