相关习题
 0  327222  327230  327236  327240  327246  327248  327252  327258  327260  327266  327272  327276  327278  327282  327288  327290  327296  327300  327302  327306  327308  327312  327314  327316  327317  327318  327320  327321  327322  327324  327326  327330  327332  327336  327338  327342  327348  327350  327356  327360  327362  327366  327372  327378  327380  327386  327390  327392  327398  327402  327408  327416  366461 

科目: 来源:吉林省长春市2018届九年级中考模拟数学试卷(2) 题型:填空题

若关于x的一元二次方程x2+mx+n=0有一个解是x=﹣2,则抛物线y=x2+mx+n﹣5一定过一个定点,它的坐标是_____.

查看答案和解析>>

科目: 来源:吉林省长春市2018届九年级中考模拟数学试卷(2) 题型:解答题

先化简,再求值:(a+1)2﹣(a+1)(a﹣1),其中,a=﹣1.

查看答案和解析>>

科目: 来源:吉林省长春市2018届九年级中考模拟数学试卷(2) 题型:解答题

为了做好防控H1N1甲型流感工作,我县卫生局准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士指导某乡镇预防H1N1甲型流感工作.

(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果.

(2)求恰好选中医生甲和护士A的概率.

查看答案和解析>>

科目: 来源:吉林省长春市2018届九年级中考模拟数学试卷(2) 题型:解答题

甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?

查看答案和解析>>

科目: 来源:吉林省长春市2018届九年级中考模拟数学试卷(2) 题型:解答题

已知四边形ABCD,对角线AC、BD交于点O.现给出四个条件:①AC⊥BD;②AC平分对角线BD;③AD∥BC;④∠OAD=∠ODA,请你以其中的三个条件作为命题的题设,以“四边形ABCD为菱形”作为命题的结论.

1.写出一个真命题,并证明

2.写出一个假命题,并举出一个反例说明

查看答案和解析>>

科目: 来源:吉林省长春市2018届九年级中考模拟数学试卷(2) 题型:解答题

典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:

请根据以上不完整的统计图提供的信息,解答下列问题:

(1)扇形统计图中a=   ,b=   ;并补全条形统计图;

(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.

(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?

查看答案和解析>>

科目: 来源:吉林省长春市2018届九年级中考模拟数学试卷(2) 题型:解答题

如图,海中有一小岛P,在距小岛P的海里范围内有暗礁,一轮船自西向东航行,它在A处时测得小岛P位于北偏东60°,且A、P之间的距离为32海里,若轮船继续向正东方向航行,轮船有无触礁危险?请通过计算加以说明.如果有危险,轮船自A处开始至少沿东偏南多少度方向航行,才能安全通过这一海域?

查看答案和解析>>

科目: 来源:吉林省长春市2018届九年级中考模拟数学试卷(2) 题型:解答题

A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.

(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?

(2)汽车B的速度是多少?

(3)求L1,L2分别表示的两辆汽车的s与t的关系式.

(4)2小时后,两车相距多少千米?

(5)行驶多长时间后,A、B两车相遇?

查看答案和解析>>

科目: 来源:吉林省长春市2018届九年级中考模拟数学试卷(2) 题型:解答题

阅读下列材料,完成任务:

自相似图形

定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.

任务:

(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为   

(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为   

(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).

请从下列A、B两题中任选一条作答:我选择   题.

A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=   (用含b的式子表示);

②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=   (用含n,b的式子表示);

B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含b的式子表示);

②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含m,n,b的式子表示).

查看答案和解析>>

科目: 来源:吉林省长春市2018届九年级中考模拟数学试卷(2) 题型:解答题

已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.

(1)用含x的代数式表示线段CF的长;

(2)如果把△CAE的周长记作C△CAE,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;

(3)当∠ABE的正切值是时,求AB的长.

查看答案和解析>>

同步练习册答案