相关习题
 0  52388  52396  52402  52406  52412  52414  52418  52424  52426  52432  52438  52442  52444  52448  52454  52456  52462  52466  52468  52472  52474  52478  52480  52482  52483  52484  52486  52487  52488  52490  52492  52496  52498  52502  52504  52508  52514  52516  52522  52526  52528  52532  52538  52544  52546  52552  52556  52558  52564  52568  52574  52582  366461 

科目: 来源:专项题 题型:解答题

如图1,在平面直角坐标系中,二次函数的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),OB=OC ,tan∠ACO=
(1)求这个二次函数的表达式;
(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由;
(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度;
(4)如图2,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积。

查看答案和解析>>

科目: 来源:专项题 题型:解答题

已知抛物线y=ax2+bx+c的顶点A在x轴上,与y轴的交点为B(0,1),且b=-4ac。
(1)求抛物线的解析式;
(2)在抛物线上是否存在一点C,使以BC为直径的圆经过抛物线的顶点A?若不存在说明理由;若存在,求出点C的坐标,并求出此时圆的圆心点P的坐标;
(3)根据(2)小题的结论,你发现B、P、C三点的横坐标之间、纵坐标之间分别有何关系?

查看答案和解析>>

科目: 来源:专项题 题型:解答题

如图,等腰直角三角形纸片ABC中,AC=BC=4,∠ACB=90°,直角边AC在x轴上,B点在第二象限,A(1,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在直线重合,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA平移,至B点到达A点停止。设平移时间为t(s),移动速度为每秒1个单位长度,平移中四边形BCFE与△AEF重叠的面积为S。
(1)求折痕EF的长;
(2)是否存在某一时刻t使平移中直角顶点C经过抛物线的顶点?若存在,求出t值;若不存在,请说明理由;
(3)直接写出S与t的函数关系式及自变量t的取值范围。

查看答案和解析>>

科目: 来源:专项题 题型:解答题

如图,六边形ABCDEF内接于半径为r(r为常数)的⊙O,其中AD为直径,且AB=CD=DE=FA。
(1)当∠BAD=75°时,求的长;
(2)求证:BC∥AD∥FE;
(3)设AB=x,求六边形ABCDEF的周长L关于x的函数关系式,并指出x为何值时,L取得最大值。

查看答案和解析>>

科目: 来源:专项题 题型:解答题

如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2。将它们分别放置于平面直角坐标系中的△AOB,△COD处,直角边OB,OD在x轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至△PEF处时,设PE,PF与OC分别交于点M,N,与x轴分别交于点G,H。
(1)求直线AC所对应的函数关系式;
(2)当点P是线段AC(端点除外)上的动点时,试探究:
①点M到x轴的距离h与线段BH的长是否总相等?请说明理由;
②两块纸板重叠部分(图中的阴影部分)的面积S是否存在最大值?若存在,求出这个最大值及S取最大值时点P的坐标;若不存在,请说明理由。

查看答案和解析>>

科目: 来源:专项题 题型:解答题

如图,抛物线经过点P,且与抛物线相交于A,B两点。
(1)求a值;
(2)设与x轴分别交于M,N两点(点M在点N的左边),与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为XA,XB,若在x轴上有一动点Q(x,0),且XA≤x≤XB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D两点,试问当x为何值时,线段CD有最大值?其最大值为多少?

查看答案和解析>>

科目: 来源:专项题 题型:解答题

在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN。令AM=x.
1)用含x的代数式表示△MNP的面积S     
2)当x为何值时,⊙O与直线BC相切?       
3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?

查看答案和解析>>

科目: 来源:专项题 题型:解答题

如图,已知抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,3)。

(1)求抛物线的解析式;
(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
(3)若点M是抛物线上一点,以B、C、D、M为顶点的四边形是直角梯形,试求出点M的坐标。

查看答案和解析>>

科目: 来源:专项题 题型:解答题

如图,抛物线交x轴于A、B两点,交y轴于M点,抛物线向右平移2个单位后得到抛物线交x轴于C、D两点。
(1)求抛物线对应的函数表达式;
(2)抛物线在x轴上方的部分是否存在点N,使以A,C,M,N为顶点的四边形是平行四边形,若存在,求出点N的坐标;若不存在,请说明理由;
(3)若点P是抛物线上的一个动点(P不与点A、B重合),那么点P关于原点的对称点Q是否在抛物线上,请说明理由。

查看答案和解析>>

科目: 来源:上海月考题 题型:解答题

在等腰梯形ABCD中,AB∥DC,∠A=45°,AB=10cm,CD=4cm。等腰直角三角形PMN的斜边MN=10cm,A点与N点重合,MN和AB在一条直线上,设等腰梯形ABCD不动,等腰直角三角形PMN沿AB所在直线以1cm/s的速度向右移动,直到点N与点B重合为止。
(1)等腰直角三角形PMN在整个移动过程中与等腰梯形ABCD重叠部分的形状由_____________变化为__________;
(2)设当等腰直角三角形PMN移动x(s)时,等腰直角三角形PMN与等腰梯形ABCD重叠部分的面积为y(cm2
①当x=6s时,则y的值是(    )cm2;(直接写出答案,不必写出过程)
②求x为何值时,y=4cm2;(要求写出过程)
③当x=______s时,y=15cm2。(直接写出答案,不必写出过程)

查看答案和解析>>

同步练习册答案