相关习题
 0  59057  59065  59071  59075  59081  59083  59087  59093  59095  59101  59107  59111  59113  59117  59123  59125  59131  59135  59137  59141  59143  59147  59149  59151  59152  59153  59155  59156  59157  59159  59161  59165  59167  59171  59173  59177  59183  59185  59191  59195  59197  59201  59207  59213  59215  59221  59225  59227  59233  59237  59243  59251  366461 

科目: 来源:广东省期末题 题型:解答题

分析所给图的旋转现象.

查看答案和解析>>

科目: 来源:广东省期末题 题型:解答题

在四边形ABCD中,∠ADC=∠B=90°,DE⊥AB,垂足为E,AD=CD,且DE=BE=5,请用旋转图形的方法求四边形ABCD的面积.

查看答案和解析>>

科目: 来源:广东省期末题 题型:解答题

如图,以锐角△ABC的边AC、AB为边向外作正方形ACDE和正方形ABGF,连接BE、CF.
(1)试探索BE和CF的关系?并说明理由。
(2)你能找到哪两个图形可以通过旋转而相互得到,并指出旋转中心和旋转角。

查看答案和解析>>

科目: 来源:湖北省期末题 题型:单选题

如图,△COD是由△AOB绕点O按逆时针方向旋转得到的,旋转角为
[     ]
A.30°
B.45°
C.90°
D.135°

查看答案和解析>>

科目: 来源:竞赛题 题型:解答题

教育部制定《数学课程标准》要求的课程目标之一是通过数学学习,学生能够“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。”
看过2003年中央电视台春节联欢会的人们都知道,魔术节目很精彩,看后给人以思考、回味,这些看似神秘的魔术节目,很多都依据着一定的科学道理,特别是有些还与我们学习的数学知识有联系,请看下面的小魔术:
如图1所示,魔术师把4张扑克牌放在桌子上,然后蒙住眼睛,请一位观众上台,把某一张牌旋转180°,魔术师解除蒙具后,看到4张扑克牌如图2所示,他很快确定了哪一张牌被旋转过.你知道这是怎么回事吗?试利用所学的数学知识,写一篇数学作文解释其中的道理,题目自拟,字数在200~400字之间。

查看答案和解析>>

科目: 来源:河北省期中题 题型:解答题

如图1和图2,在20 ×20的等距网格(每格的宽和高均是1个单位长)中,Rt△ABC从点A与点M重合的位置开始,以每秒1个单位长的速度先向下平移,当BC边与网格的底部重合时,Rt△ABC停止移动.设运动时间为x秒,△QAC的面积为y.
(1)如图1,当Rt△ABC向下平移到Rt△A1B1C1的位置时,请你在网格图中画出:
①Rt△A1B1C1关于直线QN成轴对称的图形;
②Rt△A1B1C1关于点O成中心对称的图形.
(2)如图2,在Rt△ABC向下平移的过程中,请你求出y与x的函数关系式.

查看答案和解析>>

科目: 来源:期末题 题型:单选题

如图可以看作是一个等腰直角三角形旋转若干次而生成的,则每次旋转的度数可以是
[     ]
A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

科目: 来源:期末题 题型:单选题

如图,△AOB中,∠B=30度.将△AOB绕点O顺时针旋转52 °得到△A′OB′,边A′B′与边OB交于点C(A′不在OB上),则∠A′CO的度数为
[     ]
A.22°
B.52°
C.60°
D.82°

查看答案和解析>>

科目: 来源:期末题 题型:填空题

如下图是由三个叶片组成的,绕点O旋转120 °后可以和自身重合,若每个叶片的面积为5cm2,∠AOB=120 °,则图中阴影部分的面积之和为(    )cm2

查看答案和解析>>

科目: 来源:期末题 题型:填空题

观察图中的甲、乙两图,回答下列问题:
(1)请简述由图甲变成图乙的形成过程,(      ).
(2)在图甲中,若AD=3,DB=4,则△ADE和△BDF面积的和为(       ).

查看答案和解析>>

同步练习册答案