精英家教网 > 高中数学 > 题目详情
已知圆C1:(x-3)2+y2=1,圆C2:x2+(y+4)2=16,则圆C1,C2的位置关系为(  )
分析:由两圆的方程找出两圆心坐标与各自的半径,即可判断出两圆的位置关系.
解答:解:∵圆C1:(x-3)2+y2=1,圆C2:x2+(y+4)2=16,
∴圆C1,C2的圆心坐标,半径长分别为C1(3,0),r1=1;C2(0,-4),r2=4.
∵|C1C2|=
(3-0)2+(0+4)2
=5,r1+r2=5,
∴|C1C2|=5=r1+r2
则圆C1,C2外切.
故选D
点评:此题考查了圆与圆的位置关系及其判定,两圆半径为R,r,圆心距为d,当d<R-r时,两圆内含;当d=R-r时,两圆内切;当R-r<d<R+r时,两圆相交;当d=R+r时,两圆外切;当d>R+r时,两圆外离.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C1:(x-3)2+(y+4)2=4,圆C2:x2+y2-9=0,则圆C1和圆C2的位置关系是(  )
A、外离B、外切C、相交D、内切

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆C1:(x-3)2+(y+2)2=4,圆C2:(x+m)2+(y+m+5)2=2m2+8m+10(m∈R,且m≠-3).
(1)设P为坐标轴上的点,满足:过点P分别作圆C1与圆C2的一条切线,切点分别为T1、T2,使得PT1=PT2,试求出所有满足条件的点P的坐标;
(2)若斜率为正数的直线l平分圆C1,求证:直线l与圆C2总相交.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=9.
(1)判断两圆的位置关系;
(2)求直线m的方程,使直线m被圆C1截得的弦长为4,与圆C2截得的弦长是6.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹方程.

查看答案和解析>>

同步练习册答案