精英家教网 > 高中数学 > 题目详情
已知圆C1:(x-3)2+(y+4)2=4,圆C2:x2+y2-9=0,则圆C1和圆C2的位置关系是(  )
A、外离B、外切C、相交D、内切
分析:把圆C2的方程化为标准方程,分别找出两圆的圆心坐标和半径R与r,利用两点间的距离公式求出两圆心的距离d,由d=R+r得到两圆的位置关系为外切.
解答:解:由圆C1:(x-3)2+(y+4)2=4,圆C2:x2+y2=9,
得到圆心C1(3,-4),圆心C2(0,0),且R=3,r=2,
∴两圆心间的距离d=
(3-0)2+(-4-0)2
=5,
∵5=3+2,即d=R+r,
∴圆C1和圆C2的位置关系是外切.
故选B.
点评:此题考查了圆与圆的位置关系及其判定,以及两点间的距离公式.圆与圆位置关系的判定方法为:0≤d<R-r,两圆内含;d=R-r,两圆内切;R-r<d<R+r时,两圆相交;d=R+r时,两圆外切;d>R+r时,两圆相离(d为两圆心间的距离,R和r分别为两圆的半径).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆C1:(x-3)2+(y+2)2=4,圆C2:(x+m)2+(y+m+5)2=2m2+8m+10(m∈R,且m≠-3).
(1)设P为坐标轴上的点,满足:过点P分别作圆C1与圆C2的一条切线,切点分别为T1、T2,使得PT1=PT2,试求出所有满足条件的点P的坐标;
(2)若斜率为正数的直线l平分圆C1,求证:直线l与圆C2总相交.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=9.
(1)判断两圆的位置关系;
(2)求直线m的方程,使直线m被圆C1截得的弦长为4,与圆C2截得的弦长是6.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:(x-3)2+y2=1,圆C2:x2+(y+4)2=16,则圆C1,C2的位置关系为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹方程.

查看答案和解析>>

同步练习册答案