精英家教网 > 高中数学 > 题目详情
已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹方程.
分析:设动圆圆心M(x,y),动圆M与C1、C2的切点分别为A、B,则|MC1|-|AC1|=|MA|,|MC2|-|BC2|=|MB|,从而可得|MC2|-|MC1|=2,利用双曲线的定义,即可求动圆圆心M的轨迹方程.
解答:解:设动圆圆心M(x,y),动圆M与C1、C2的切点分别为A、B,则|MC1|-|AC1|=|MA|,|MC2|-|BC2|=|MB|.
又∵|MA|=|MB|,
∴|MC2|-|MC1|=|BC2|-|AC1|=3-1=2,
即|MC2|-|MC1|=2,又∵|C1C2|=6,
由双曲线定义知:动点M的轨迹是以C1、C2为焦点,中心在原点的双曲线的左支.
∵2a=2,2c=6,∴a=1,c=3,
∴b2=8.
∴动点M的轨迹方程为x2-
y2
8
=1(x≤-1).
点评:本题考查圆与圆的位置关系,考查双曲线的定义,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C1:(x-3)2+(y+4)2=4,圆C2:x2+y2-9=0,则圆C1和圆C2的位置关系是(  )
A、外离B、外切C、相交D、内切

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆C1:(x-3)2+(y+2)2=4,圆C2:(x+m)2+(y+m+5)2=2m2+8m+10(m∈R,且m≠-3).
(1)设P为坐标轴上的点,满足:过点P分别作圆C1与圆C2的一条切线,切点分别为T1、T2,使得PT1=PT2,试求出所有满足条件的点P的坐标;
(2)若斜率为正数的直线l平分圆C1,求证:直线l与圆C2总相交.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=9.
(1)判断两圆的位置关系;
(2)求直线m的方程,使直线m被圆C1截得的弦长为4,与圆C2截得的弦长是6.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:(x-3)2+y2=1,圆C2:x2+(y+4)2=16,则圆C1,C2的位置关系为(  )

查看答案和解析>>

同步练习册答案