精英家教网 > 高中数学 > 题目详情

双曲线上一点P,到一个焦点的距离为12,则P到另一个焦点的距离为                       

          

22或2,


解析:

双曲线方程中,由曲线定义知

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

现有变换公式T:
4
5
x+
3
5
y=x′
3
5
x-
4
5
y=y′
可把平面直角坐标系上的一点P(x,y)变换到这一平面上的一点P′(x′,y′).
(1)若椭圆C的中心为坐标原点,焦点在x轴上,且焦距为2
2
,长轴顶点和短轴顶点间的距离为2.求该椭圆C的标准方程,并求出其两个焦点F1、F2经变换公式T变换后得到的点F1和F2的坐标;
(2)若曲线M上一点P经变换公式T变换后得到的点P'与点P重合,则称点P是曲线M在变换T下的不动点.求(1)中的椭圆C在变换T下的所有不动点的坐标;
(3)在(2)的基础上,试探究:中心为坐标原点、对称轴为坐标轴的椭圆和双曲线在变换T下的不动点的存在情况和个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义变换T:
cosθ•x+sinθ•y=x′
′sinθ•x-cosθ•y=y′
可把平面直角坐标系上的点P(x,y)变换到这一平面上的点P′(x′,y′).特别地,若曲线M上一点P经变换公式T变换后得到的点P'与点P重合,则称点P是曲线M在变换T下的不动点.
(1)若椭圆C的中心为坐标原点,焦点在x轴上,且焦距为2
2
,长轴顶点和短轴顶点间的距离为2.求该椭圆C的标准方程.并求出当θ=arctan
3
4
时,其两个焦点F1、F2经变换公式T变换后得到的点F1和F2的坐标;
(2)当θ=arctan
3
4
时,求(1)中的椭圆C在变换T下的所有不动点的坐标;
(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换T:
cosθ•x+sinθ•y=x′
′sinθ•x-cosθ•y=y′
θ≠
2
,k∈Z)下的不动点的存在情况和个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线x2-4y2=4上一点P到双曲线的一个焦点的距离等于6,那么P点到另一焦点的距离等于
10或2
10或2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•红桥区一模)如图所示,双曲线
x2
16
-
y2
20
=1
上一点P到右焦点F2的距离是实轴两端点A1,A2到右焦点F2距离的等差中项,则P点到左焦点F1的距离为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•崇文区一模)双曲线
x2
9
-
y2
16
=1
的左、右焦点为F1、F2,则左焦点F1到渐进线的距离为
4
4
,若双曲线上一点P使得∠F1PF2为锐角,则P点横坐标的取值范围是
x<-
3
41
5
x>
3
41
5
x<-
3
41
5
x>
3
41
5

查看答案和解析>>

同步练习册答案