精英家教网 > 高中数学 > 题目详情
2.如图画的某几何体的三视图,网格纸上小正方形的边长为1,则该几何体的表面积为(  )
A.$144+2\sqrt{10}π$B.$144+({2\sqrt{10}-2})π$C.$128+2\sqrt{10}π$D.$128+({2\sqrt{10}-2})π$

分析 根据几何体的三视图知,该几何体是四棱柱,
在上下底面各挖去一个圆锥体,
再根据图中数据,计算它的表面积.

解答 解:根据几何体的三视图知,该几何体是四棱柱,
在上下底面各挖去一个圆锥体,如图所示;
根据图中数据,计算该几何体的表面积为
S=2×(4×4+4×6+4×6-π×12)+2×π×1×$\sqrt{{1}^{2}{+3}^{2}}$
=128+(2$\sqrt{10}$-2)π.
故选:D.

点评 本题考查了空间几何体三视图的应用问题,解题的关键是还原几何体的直观图,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知边长为2$\sqrt{3}$的菱形ABCD中,∠BAD=60°,沿对角边BD折成二面角A-BD-C为120°的四面体ABCD,则四面体的外接球的表面积为28π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的.
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(Ⅲ)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入x(单位:万元)12345
销售收益y(单位:万元)2327
表中的数据显示,与y之间存在线性相关关系,请将(Ⅱ)的结果填入空白栏,并计算y关于的回归方程.
回归直线的斜率和截距的最小二乘估计公式分别为$\frac{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若A={x|2≤2x≤8},B={x|log2x>1},则A∩B={x|2<x≤3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设全集U=R,若集合A={x|$\frac{x-1}{4-x}$≥0},B={x|log2x≤2},则A∩B=(  )
A.{x|x<4}B.{x|x≤4}C.{x|1≤x<4}D.{x|1≤x≤4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列说法正确的是(  )
A.任何事件的概率总是在(0,1)之间
B.频率是客观存在的,与试验次数无关
C.概率是随机的,在试验前不能确定
D.随着试验次数的增加,频率一般会越来越接近概率

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知-π<x<0,$sinx+cosx=\frac{1}{5}$.
(1)求sinx-cosx的值; 
(2)求$\frac{3si{n}^{2}\frac{x}{2}-2sin\frac{x}{2}cos\frac{x}{2}+co{s}^{2}\frac{x}{2}}{tanx+\frac{1}{tanx}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若f(x)=ex+sinx-cosx的导数为f'(x),则f'(0)等于(  )
A.2B.ln2+1C.ln2-1D.ln2+2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在平面直角坐标系xOy中,已知圆C:(x-a)2+(y-a-2)2=1,点A(0,3),若圆C上存在点M,满足|MA|=2|MO|(O为坐标原点),则实数a的取值范围是(  )
A.[-3,0]B.(-∞,-3]∪[0,+∞)C.[0,3]D.(-∞,0]∪[3,+∞)

查看答案和解析>>

同步练习册答案