精英家教网 > 高中数学 > 题目详情
11.如图,在正四棱锥P-ABCD中,AB=2,PA=$\sqrt{6}$,E是棱PC的中点,过AE作平面分别与棱PB、PD交于M、N两点.
(1)若PM=$\frac{2}{3}$PB,PN=λPD,求λ的值;
(2)求直线PA与平面AMEN所成角的正弦值的取值范围.

分析 (Ⅰ)连接AC、BD交于点O,以O为坐标原点建立如图所示的空间直角坐标系,则A(0,-$\sqrt{2}$,0),B ($\sqrt{2}$,0,0),C(0,$\sqrt{2}$,0),D(-$\sqrt{2}$,0,0),P(0,0,2),E(0,$\frac{\sqrt{2}}{2}$,1)由AN,AE,AM共面,$\overrightarrow{AE}=x\overrightarrow{AM}+y\overrightarrow{AN}$⇒$\left\{\begin{array}{l}{\frac{2\sqrt{2}x}{3}-\sqrt{2}λy=0}\\{\frac{3\sqrt{2}}{2}=\sqrt{2}x+\sqrt{2}y}\\{1=\frac{2}{3}x+(2-2λ)y}\end{array}\right.$⇒$\left\{\begin{array}{l}{x=y=\frac{3}{4}}\\{λ=\frac{2}{3}}\end{array}\right.$.
(Ⅱ)根据正四棱锥P-ABCD的对称性可知,当PM=PN时,P到面AMEN的距离最大,此时直线PA与平面AMEN所角最大,P到面AMEN的距离最小,此时直线PA与平面AMEN所角最小.利用向量分别求出求解直线PA与平面AMEN所成角的正弦值.

解答 解:(Ⅰ)连接AC、BD交于点O,以O为坐标原点建立如图所示的空间直角坐标系,则A(0,-$\sqrt{2}$,0),B ($\sqrt{2}$,0,0),C(0,$\sqrt{2}$,0),D(-$\sqrt{2}$,0,0),P(0,0,2),E(0,$\frac{\sqrt{2}}{2}$,1)
$\overrightarrow{AE}=(0,\frac{3\sqrt{2}}{2},1)$,$\overrightarrow{AP}=(0,\sqrt{2},2)$,$\overrightarrow{PB}=(\sqrt{2},0,-2)$,$\overrightarrow{PD}=(-\sqrt{2},0,-2)$,$\overrightarrow{AM}=\overrightarrow{AP}+\overrightarrow{PM}=(\frac{2\sqrt{2}}{3},\sqrt{2},\frac{2}{3})$.
$\overrightarrow{AN}=\overrightarrow{AP}+\overrightarrow{PN}=(-\sqrt{2}λ,\sqrt{2},2-2λ)$,
∵AN,AE,AM共面,∴$\overrightarrow{AE}=x\overrightarrow{AM}+y\overrightarrow{AN}$⇒$\left\{\begin{array}{l}{\frac{2\sqrt{2}x}{3}-\sqrt{2}λy=0}\\{\frac{3\sqrt{2}}{2}=\sqrt{2}x+\sqrt{2}y}\\{1=\frac{2}{3}x+(2-2λ)y}\end{array}\right.$⇒$\left\{\begin{array}{l}{x=y=\frac{3}{4}}\\{λ=\frac{2}{3}}\end{array}\right.$.
(Ⅱ)根据正四棱锥P-ABCD的对称性可知,当PM=PN时,P到面AMEN的距离最大,此时直线PA与平面AMEN所角最大,
,P到面AMEN的距离最小,此时直线PA与平面AMEN所角最小.
①由(Ⅰ)知当PM=PN时,λ=$\frac{2}{3}$,$\overrightarrow{AM}=(\frac{2\sqrt{2}}{3},\sqrt{2},\frac{2}{3}),\overrightarrow{AE}=(0,\frac{3}{2}\sqrt{2},1)$,
设面AMEN的法向量为$\overrightarrow{m}=(x,y,z)$,
由$\frac{3\sqrt{2}}{2}y+z=0$,$\frac{2\sqrt{2}}{3}x+\sqrt{2}y+\frac{2}{3}z=0$取$\overrightarrow{m}=(0,\sqrt{2},-3)$
设直线PA与平面AMEN所成角为θ,sinθ=|cos<$\overrightarrow{m},\overrightarrow{AP}$>|=$\frac{2\sqrt{66}}{33}$,
②当M在B时,因为AB∥面PDC,所以过AB,AE的面与面PDC的交线NE∥AB
设$\overrightarrow{n}=(a,b,c)$是面ABEN的法向量,
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AB}=\sqrt{2}a+\sqrt{2}b=0}\\{\overrightarrow{n}•\overrightarrow{AE}=\frac{3\sqrt{2}}{2}b+c=0}\end{array}\right.$,可取$\overrightarrow{n}=(-\sqrt{2},\sqrt{2},-3)$
sinθ=|cos<$\overrightarrow{n}•\overrightarrow{AP}$>|=$\frac{2\sqrt{78}}{39}$.
直线PA与平面AMEN所成角的正弦值的取值范围为[$\frac{2\sqrt{78}}{39}$,$\frac{2\sqrt{66}}{33}$]

点评 本题考查了空间存在性问题,通过向量共面证明四点共面,及向量法求线面角,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知圆O:x2+y2=1和定点A(2,1),由圆外一点P(a,b)向圆O引切线PQ,切点为Q,且满足|PQ|=|PA|.
(1)求实数a,b间满足的等量关系式;
(2)求△OQP面积的最小值;
(3)求||PO|-|PA||的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设正数x,y满足log${\;}_{\frac{1}{3}}$x+log3y=m(m∈[-1,1]),若不等式3ax2-18xy+(2a+3)y2≥(x-y)2有解,则实数a的取值范围是(  )
A.(1,$\frac{55}{29}$]B.(1,$\frac{31}{21}$]C.[$\frac{31}{21}$,+∞)D.[$\frac{55}{29}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|y=$\sqrt{x}$},B={x|x2-x>0},则A∩B=(  )
A.{x|x≥0}B.{x|0<x<1}C.{x|x>1}D.{x|x<0或x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.各项均为正数的数列{an}的前n项和为Sn,且满足${a_2}=4\;,\;\;a_{n+1}^2=6{S_n}+9n+1\;,\;\;n∈{N^*}$.各项均为正数的等比数列{bn}满足b1=a1,b3=a2
(1)求证{an}为等差数列并求数列{an}、{bn}的通项公式;
(2)若cn=(3n-2)•bn,数列{cn}的前n项和Tn
①求Tn
②若对任意n≥2,n∈N*,均有$({T_n}-5)m≥6{n^2}-31n+35$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=x2+2(a-1)x+1在(-∞,-2)上是减函数,则a的取值范围是(-∞,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.对?x∈(0,$\frac{1}{3}$),8x≤logax+1恒成立,则实数a的取值范围是(  )
A.(0,$\frac{2}{3}$)B.(0,$\frac{1}{2}$]C.[$\frac{1}{3}$,1)D.[$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$\frac{{e}^{x}}{x}$的图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将一枚硬币连续抛掷n次,若使得至少有一次正面向上的概率不小于$\frac{15}{16}$,则n的最小值为(  )
A.4B.5C.6D.7

查看答案和解析>>

同步练习册答案