精英家教网 > 高中数学 > 题目详情
2.已知点A(1,0),B(3,0),若直线y=kx+1上存在点P,满足PA⊥PB,则k的取值范围是$[-\frac{4}{3},0]$.

分析 以AB为直径圆的方程为:(x-1)(x-3)+y2=0,把y=kx+1代入上述方程可得:(1+k2)x2+(2k-4)x+4=0,根据直线y=kx+1上存在点P,满足PA⊥PB,可得△≥0,解出即可得出.

解答 解:以AB为直径圆的方程为:(x-1)(x-3)+y2=0,
把y=kx+1代入上述方程可得:(1+k2)x2+(2k-4)x+4=0,
∵直线y=kx+1上存在点P,满足PA⊥PB,
∴△=(2k-4)2-16(1+k2)≥0,化为:3k2+4k≤0.
解得$-\frac{4}{3}≤k≤$0,
则k的取值范围是$[-\frac{4}{3},0]$.
故答案为:$[-\frac{4}{3},0]$.

点评 本题考查了直线与圆的方程、一元二次方程的实数根与判别式的关系、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知函数$f(x)=\left\{{\begin{array}{l}{2x-xlnx(x>0)}\\{-{x^2}-\frac{3}{2}x(x≤0)}\end{array}}\right.$有且仅有四个不同的点关于直线y=1的对称点在直线kx+y-1=0上,则实数k的取值范围为(  )
A.$(\frac{1}{2},1)$B.$(\frac{1}{2},\frac{3}{4})$C.$(\frac{1}{3},1)$D.$(\frac{1}{2},2)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.“sinα+cosα=0”是“cos2α=0”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分且必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=ex-e-x,下列命题正确的有①②④.(写出所有正确命题的编号)
①f(x)是奇函数;
②f(x)在R上是单调递增函数;
③方程f(x)=x2+2x有且仅有1个实数根;
④如果对任意x∈(0,+∞),都有f(x)>kx,那么k的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设命题p:?x∈[0,+∞),ex≥1,则¬p是(  )
A.?x0∉[0,+∞),${e^{x_0}}<1$B.?x∉[0,+∞),ex<1
C.?x0∈[0,+∞),${e^{x_0}}<1$D.?x∈[0,+∞),ex<1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某空间几何体的三视图如图所示,则该几何体的体积为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在平面直角坐标系下,曲线C1:$\left\{\begin{array}{l}{x=2t+2a}\\{y=-t}\end{array}\right.$(t为参数),曲线C2:$\left\{\begin{array}{l}{x=2sinθ}\\{y=1+2cosθ}\end{array}\right.$(θ为参数),若曲线C1,C2有公共点,则实数a的取值范围是1-$\sqrt{5}$≤a≤1+$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}中,a1=1,an+1=$\left\{\begin{array}{l}{\frac{1}{3}{a}_{n}+n,n为奇数}\\{{a}_{n}-3n,n为偶数}\end{array}\right.$
(Ⅰ)设bn=a2n-$\frac{3}{2}$,求证:数列{bn}是等比数列;
(Ⅱ)设Sn=$\sum_{k=t}^{n}{a}_{k}$,求满足Sn>0的所有正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.数列{an}满足(an+1-1)(1-an)=an,a8=2,则S2017=$\frac{2017}{2}$.

查看答案和解析>>

同步练习册答案