精英家教网 > 高中数学 > 题目详情
4.如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=2,G和H分别是AE和AF的中点.
(1)求证:平面BDGH∥平面CEF;
(2)求多面体ABCDEF的体积.

分析 (1)取EF的中点M,连接AM,CM,连接GH,设AM交GH于N,则N为AM的中点,连接AC,BD交于O,由已知可得O为AC的中点,由三角形中位线定理可得ON∥MC,进一步得到ON∥平面EFC,同理得到GH∥平面EFC,由面面平行的判定可得平面BDGH∥平面CEF;
(2)由(1)知,AC⊥BD,结合面面垂直的性质可得AC⊥平面BDEF.则由棱锥体积公式求得多面体ABCDEF的体积.

解答 (1)证明:取EF的中点M,连接AM,CM,
连接GH,设AM交GH于N,则N为AM的中点,
连接AC,BD交于O,∵底面为菱形,则O为AC的中点,
连接ON,则ON∥MC,
∵MC?平面EFC,ON?平面EFC,∴ON∥平面EFC,
∵G和H分别是AE和AF的中点,∴GH∥EF,
∵EF?平面EFC,∴GH∥平面EFC,
又ON∩GH=N,∴平面BDGH∥平面CEF;
(2)解:由(1)知,AC⊥BD,又平面BDEF⊥平面ABCD,且平面BDEF∩平面ABCD=BD,
∴AC⊥平面BDEF.
∵四边形BDEF是矩形,BF=2,底面ABCD是边长为2的菱形,∠BAD=60°,
∴${V}_{ABCDEF}=\frac{1}{3}×{S}_{BDEF}×AC=\frac{1}{3}×2×2×2\sqrt{3}$=$\frac{8\sqrt{3}}{3}$.

点评 本题考查线面平行的判定,考查了空间想象能力和思维能力,训练了棱锥体积的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2$\sqrt{3}$tan($\frac{x}{2}$+$\frac{π}{4}$)cos2($\frac{x}{2}$+$\frac{π}{4}$)-sin(x+π).
(Ⅰ)求f(x)的定义域和最小正周期;
(Ⅱ)若将f(x)的图象向右平移$\frac{π}{6}$个单位,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,设ABCD和ABEF均为平行四边形,他们不在同一平面内,M,N分别为对角线AC,BF上的点,且AM:AC=FN:BF.
求证:MN∥平面BEC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.写出与下列各角终边相同的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来:
(1)60°;
(2)-21°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知M,N分别为椭圆C的左右焦点,P为椭圆C上的点,若椭圆C存在4个点满足条件∠MPN=60°,那么椭圆的离心率取值范围($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.对任意实数a,b,c,d,定义符号$(\begin{array}{l}{a}&{b}\\{c}&{d}\end{array})$=$\left\{\begin{array}{l}{\sqrt{ad-bc}(ad≥bc)}\\{\frac{1}{2}\sqrt{bc-ad}(ad<bc)}\end{array}\right.$,已知函数f(x)=$(\begin{array}{l}{x}&{4}\\{1}&{x}\end{array})$,直线l:kx-y+3-2k=0,若直线l与函数f(x)的图象有两个公共点,则实数k的取值范围是(  )
A.(-1,$\frac{2}{3}$)∪($\frac{3}{4}$,1)B.(-1,$\frac{17}{24}$)C.(-1,$\frac{17}{24}$)∪($\frac{3}{4}$,1)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.与圆x2+(y-2)2=2相切,且在两坐标轴上的截距相等的直线方程为y=±x或y=-x+4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设数列{an}前n项和Sn,且,令Sn=2an-2bn=log2an
(I)试求数列{an}的通项公式;
(Ⅱ)设${c_n}=\frac{b_n}{a_n}$,求证数列{cn}的前n项和Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)为偶函数,且函数图象的相邻两条对称轴间的距离为$\frac{π}{2}$
(1)求f($\frac{π}{8}$)
(2)求函数f(x)的单调减区间.

查看答案和解析>>

同步练习册答案