精英家教网 > 高中数学 > 题目详情
18.已知复数z1=1-i,z2=-2+3i,则复数$\frac{{i•{z_2}}}{z_1}$对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数的运算法则、几何意义即可得出.

解答 解:复数$\frac{{i•{z_2}}}{z_1}$=$\frac{i(-2+3i)}{1-i}$=$\frac{(-3-2i)(1+i)}{(1-i)(1+i)}$=$\frac{-1-5i}{2}$对应的点$(-\frac{1}{2},-\frac{5}{2})$在第三象限.
故选:C.

点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|$\frac{1-x}{1+x}$>0},B={x|lg(x+9)<1},则A∩B=(  )
A.(-1,1)B.(-∞,1)C.{0}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=4x-2x,实数s,t满足f(s)+f(t)=0,a=2s+2t,b=2s+t
(1)当函数f(x)的定义域为[-1,1]时,求f(x)的值域;
(2)求函数关系式b=g(a),并求函数g(a)的定义域D;
(3)在(2)的结论中,对任意x1∈D,都存在x2∈[-1,1],使得g(x1)=f(x2)+m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.一个棱锥的三视图如图所示,其中侧视图为正三角形,则四棱锥的体积是$\frac{{\sqrt{3}}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=\frac{1}{x}+klnx$,k≠0.
(Ⅰ)当k=2时,求函数f(x)切线斜率中的最大值;
(Ⅱ)若关于x的方程f(x)=k有解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.运行如图所示的程序框图,若输出的y值为$-\sqrt{2}$,则判断框中应填写的条件是(  )
A.i>5?B.i>3?C.i>6?D.i>4?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知x,y满足约束条件$\left\{{\begin{array}{l}{x-y+2≥0}\\{x+2y-2≥0}\\{x≤2}\end{array}}\right.$,则目标函数z=-x+2y的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在棱柱ABC-A1B1C1中,点C在平面A1B1C1内的射影点为的A1B1中点O,AC=BC=AA1,∠ACB=90°.
(1)求证:AB⊥平面OCC1
(2)求二面角A-CC1-B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow{a}$=(sinθ,1),$\overrightarrow{b}$=(-sinθ,0),$\overrightarrow{c}$=(cosθ,-1),且(2$\overrightarrow{a}$-$\overrightarrow{b}$)∥$\overrightarrow{c}$,则tanθ等于-$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案