科目: 来源:选修设计数学1-1北师大版 北师大版 题型:044
学校科技小组在计算机上模拟航天器变轨返回试验.设计方案如图所示:航天器运行(按顺时针方向)的轨迹方程为
+
=1,变轨(即航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以y轴为对称轴、M(0,
)为顶点的抛物线的实线部分,降落点为D(8,0).观测点A(4,0)、B(6,0)同时跟踪航天器.
(1)求航天器变轨后的运行轨迹所在的曲线方程;
(2)试问:当航天器在x轴上方时,观测点A、B测得离航天器距离分别为多少时,向航天器发出变轨指令?
查看答案和解析>>
科目: 来源:选修设计数学1-1北师大版 北师大版 题型:044
小明家中有两种酒杯,一种酒杯的轴截面是等腰直角三角形,称之为直角酒杯(如图(1)),另一种酒杯的轴截面近似一条抛物线,杯口宽4 cm,杯深为8 cm(如图(2)),称之为抛物线酒杯.
![]()
(1)请选择适当的坐标系,求出抛物线酒杯的方程.
(2)一次,小明在游戏中注意到一个现象,若将一些大小不等的玻璃球依次放入直角酒杯中,则任何玻璃球能触及酒杯杯底.但若将这些玻璃球放入抛物线酒杯中,则有些小玻璃球能触及酒杯杯底.小明想用所学过的数学知识研究一下,当玻璃球的半径r为多大值时,玻璃球一定会触及酒杯杯底部.你能帮助小明解决这个问题吗?
查看答案和解析>>
科目: 来源:选修设计数学1-1北师大版 北师大版 题型:044
在平面直角坐标系xOy中,抛物线y=x2上异于坐标原点O的两不同动点A、B满足AO⊥BO(如图所示).
![]()
(1)求△AOB的重心G(即三角形三条中线的交点)的轨迹方程;
(2)△AOB的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源:选修设计数学1-1北师大版 北师大版 题型:044
已知抛物线x2=4y,点P是此抛物线上一动点,点A坐标为(12,6),求点P到点A的距离与到x轴距离之和的最小值.
查看答案和解析>>
科目: 来源:选修设计数学1-1北师大版 北师大版 题型:044
如图,已知抛物线的焦点为F(5,1),准线方程为x=1.
![]()
(1)求抛物线方程;
(2)求焦点到顶点的距离;
(3)求顶点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com