相关习题
 0  147348  147356  147362  147366  147372  147374  147378  147384  147386  147392  147398  147402  147404  147408  147414  147416  147422  147426  147428  147432  147434  147438  147440  147442  147443  147444  147446  147447  147448  147450  147452  147456  147458  147462  147464  147468  147474  147476  147482  147486  147488  147492  147498  147504  147506  147512  147516  147518  147524  147528  147534  147542  266669 

科目: 来源:2012年普通高等学校招生全国统一考试新课标卷理数 题型:044

设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点.

(Ⅰ)若∠BFD=90°,△ABD的面积为4,求p的值及圆F的方程;

(Ⅱ)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.

查看答案和解析>>

科目: 来源:2012年普通高等学校招生全国统一考试新课标卷理数 题型:044

如图,直三棱柱ABC-A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD.

(Ⅰ)证明:BC1⊥BC

(Ⅱ)求二面角A1-BD-C1的大小.

查看答案和解析>>

科目: 来源:2012年普通高等学校招生全国统一考试新课标卷理数 题型:044

某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.

(Ⅰ)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.

(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

以100天记录的各需求量的频率作为各需求量发生的概率.

(ⅰ)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;

(ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.

查看答案和解析>>

科目: 来源:2012年普通高等学校招生全国统一考试新课标卷理数 题型:044

已知a,b,c分别为△ABC三个内角A,B,C的对边,

(Ⅰ)求A;

(Ⅱ)若a=2,△ABC的面积为,求b,c.

查看答案和解析>>

科目: 来源:2012年普通高等学校招生全国统一考试湖南卷数学文科 题型:044

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1,f(x1)),B(x2,f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使(x0)=k恒成立.

查看答案和解析>>

科目: 来源:2012年普通高等学校招生全国统一考试湖南卷数学文科 题型:044

在直角坐标系xOy中,已知中心在原点,离心率为的椭圆E的一个焦点为圆C:x2+y2-4x+2=0的圆心.

(Ⅰ)求椭圆E的方程;

(Ⅱ)设P是椭圆E上一点,过P作两条斜率之积为的直线l1l2.当直线l1l2都与圆C相切时,求P的坐标.

查看答案和解析>>

科目: 来源:2012年普通高等学校招生全国统一考试湖南卷数学文科 题型:044

某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产.设第n年年底企业上缴资金后的剩余资金为an万元.

(Ⅰ)用d表示a1a2,并写出an+1an的关系式;

(Ⅱ)若公司希望经过m(m≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d的值(用m表示).

查看答案和解析>>

科目: 来源:2012年普通高等学校招生全国统一考试湖南卷数学文科 题型:044

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.

(Ⅰ)证明:BD⊥PC;

(Ⅱ)若AD=4,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目: 来源:2012年普通高等学校招生全国统一考试湖南卷数学文科 题型:044

已知函数f(x)=Asin(ωx+)(x∈R,ω>0,0<ω<)部分图像如图所示.

(Ⅰ)求函数f(x)的解析式;

(Ⅱ)求函数g(x)=f(x-)-f(x+)的单调递增区间.

查看答案和解析>>

科目: 来源:2012年普通高等学校招生全国统一考试湖南卷数学文科 题型:044

某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.

已知这100位顾客中的一次购物量超过8件的顾客占55%.

(Ⅰ)确定x,y的值,并估计顾客一次购物的结算时间的平均值;

(Ⅱ)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)

查看答案和解析>>

同步练习册答案