相关习题
 0  21933  21941  21947  21951  21957  21959  21963  21969  21971  21977  21983  21987  21989  21993  21999  22001  22007  22011  22013  22017  22019  22023  22025  22027  22028  22029  22031  22032  22033  22035  22037  22041  22043  22047  22049  22053  22059  22061  22067  22071  22073  22077  22083  22089  22091  22097  22101  22103  22109  22113  22119  22127  266669 

科目: 来源:江西省高考真题 题型:解答题

在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,以AC的中点O为球心、AC为直径的球面交DAPD于点M,交PC于点N。
(1)求证:平面ABM⊥平面PCD;
(2)求直线CD与平面ACM所成的角的大小;
(3)求点N到平面ACM的距离。

查看答案和解析>>

科目: 来源:高考真题 题型:解答题

如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直,点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<),
(Ⅰ)求MN的长;
(Ⅱ)当a为何值时,MN的长最小;
(Ⅲ)当MN长最小时,求面MNA与面MNB所成的二面角α的大小。

查看答案和解析>>

科目: 来源:天津高考真题 题型:解答题

如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直。点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<),
(1)求MN的长;
(2)当a为何值时,MN的长最小;
(3)当MN长最小时,求面MNA与面MNB所成的二面角α的大小。

查看答案和解析>>

科目: 来源:上海高考真题 题型:单选题

已知直线l、m,平面α、β,且l⊥α,mβ,给出下列四个命题:
(1)若α∥β,则l⊥m;(2)若l⊥m,则α∥β;
(3)若α⊥β,则l∥m;(4)若l∥m,则α⊥β;
其中正确命题的个数是
[     ]
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目: 来源:专项题 题型:解答题

在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E,G,F分别为MB,PB,PC的中点,且AD=PD=2MA。
(1)求证:平面EFG⊥平面PDC;
(2)求三棱锥P-MAB与四棱锥P-ABCD的体积之比。

查看答案和解析>>

科目: 来源:湖南省高考真题 题型:解答题

如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=
(1)证明:平面PBE⊥平面PAB;
(2)求二面角A-BE-P和的大小。

查看答案和解析>>

科目: 来源:湖南省高考真题 题型:解答题

如图,在圆锥PO中,已知PO=,⊙O的直径AB=2,C是的中点,D为AC的中点,
(Ⅰ)证明:平面POD⊥平面PAC;
(Ⅱ)求二面角B-PA-C的余弦值.

查看答案和解析>>

科目: 来源:河北省期末题 题型:解答题

如图,已知四棱锥 P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,平面PBC⊥平面ABCD,O是BC的中点,AO交BD于点E。
(1)证明:PA⊥BD;
(2)点M为直线PA上的一点,当点M在何位置时有PA⊥平面BDM,并证明;
(3)判断平面PAD与平面PAB是否垂直,并证明你的结论。

查看答案和解析>>

科目: 来源:北京高考真题 题型:解答题

如图,在Rt△AOB中,∠OAB=,斜边AB=4。Rt△AOC可以通过Rt△AOB以直线AO为轴旋转得到,且二面角B-AO-C是直二面角,动点D在斜边AB上。
(1)求证:平面COD⊥平面AOB;
(2)当D为AB的中点时,求异面直线AO与CD所成角的余弦值大小;
(3)求CD与平面AOB所成角的最大值。

查看答案和解析>>

科目: 来源:湖南省模拟题 题型:解答题

如图,在矩形ABCD中,AB=2BC=12,E为CD的中点;将△DAE沿AE折起,使面DAE⊥面ABCE;再过D作DQ∥AB,且DQ=AB,
(Ⅰ)求证:面ADE⊥面BEQ;
(Ⅱ)求直线BD与面ADE所成角的正切值;
(Ⅲ)求点Q到面ADE的距离.

查看答案和解析>>

同步练习册答案