相关习题
 0  235351  235359  235365  235369  235375  235377  235381  235387  235389  235395  235401  235405  235407  235411  235417  235419  235425  235429  235431  235435  235437  235441  235443  235445  235446  235447  235449  235450  235451  235453  235455  235459  235461  235465  235467  235471  235477  235479  235485  235489  235491  235495  235501  235507  235509  235515  235519  235521  235527  235531  235537  235545  266669 

科目: 来源: 题型:解答题

17.4个男同学,3个女同学站成一排.
(1)3个女同学必须相邻,有多少种不同的排法?
(2)任何两个女同学彼此不相邻,有多少种不同的排法?

查看答案和解析>>

科目: 来源: 题型:填空题

16.在长方体ABCD-A1B1C1D1中,E、F分别是棱BC,CC1上的点,CF=AB=2CE,AB:AD:AA1=1:2:4,二面角A1-ED-F的正弦值$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知集合A={x|(x+1)(x-2)<0},非空集合B={x|2a<x<6},则“A∩B=∅”的充分不必要条件可以是(  )
A.-1<a<2B.1≤a<3C.a>0D.1<a<3

查看答案和解析>>

科目: 来源: 题型:解答题

14.函数y=f(x),x∈D,若常数C满足C>0,且函数y=f(x)在x∈D上的值域是y=$\frac{C^2}{f(x)}$,在x∈D上的值域的子集,则称函数f(x)在D上的几何平均数为C.
(1)已知f(x)=lnx,求函数f(x)在[e,e2]上的几何平均数;
(2)若函数f(t)=-2t2-at+1(a<-1)在区间[$\frac{1}{2}$,1]上的几何平均数为$\frac{{\sqrt{{a^2}+8}}}{2}$,求实数a的值.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知△ABC的三边a,b,c的倒数成等差数列,试分别用综合法和分析法证明:B为锐角.

查看答案和解析>>

科目: 来源: 题型:选择题

12.点P所在轨迹的极坐标方程为ρ=2cosθ,点Q所在轨迹的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=4+2t}\end{array}\right.$(t为参数),则|PQ|的最小值是(  )
A.2B.$\frac{4\sqrt{5}}{5}$+1C.1D.$\frac{4\sqrt{5}}{5}$-1

查看答案和解析>>

科目: 来源: 题型:解答题

11.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=5cosφ}\\{y=bsinφ}\end{array}\right.$(φ为参数,0<b<5)
以O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$c(c为曲线C的半焦距)
(Ⅰ)求曲线C的普通方程及直线l的直角坐标方程
(Ⅱ)点M为曲线C上任意一点,若点M到直线l的距离的最大值为4$\sqrt{2}$,求b的值.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,正方形ABCD中,E是AB的中点,CE与以BC为直径的半圆O交于点F,C
(Ⅰ)证明:DF与圆O相切
(Ⅱ)证明:△DCF∽△OBF.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且经过点(2,0)
(Ⅰ)求椭圆C的方程
(Ⅱ)若与坐标轴不垂直的直线l经过椭圆C的左焦点F(-c,0),且与椭圆C交于不同两点A,B,问是否存在常数λ,(λ为实数),使|AB|=λ|AF||BF|恒成立,若存在,请求出λ的值,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图所示,AC=BC=1,∠ACB-90°,PA⊥平面ABC,CE∥PA,PA=2CE=2,
(1)求证:平面EPB⊥平面APB
(2)求二面角A-BE-P的正弦.

查看答案和解析>>

同步练习册答案