精英家教网 > 初中数学 > 题目详情
点G是正方形ABCD边AB的中点,点E是射线BC上一点,∠AEF=90°,且EF交正方形外角平分线CF于点F,连接EG.

(1)若E为BC的中点(如图1)
①求证:△AEG≌△EFC;
②连接DF,DB,求证:DF⊥BD;
(2)若E是BC延长线上一点(如图2),则线段CF和BE之间存在怎样的数量关系,给出你的结论并证明.
(1)①∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠ABD=∠BDC=45°.
∵点G、E分别是AB、BC的中点,
∴AG=BG=
1
2
AB,BE=CE=
1
2
BC,
∴AG=BG=BE=CE.
∴∠BGE=45°,
∴∠AGE=135°.
∵CF平分∠DCN,
∴∠DCF=∠NCF=45°,
∴∠ECF=135°.
∴∠AGE=∠ECF.
∵∠AEF=90°,
∴∠AEB+∠FEN=90°.
∵∠AEB+∠BAE=90°,
∴∠BAE=∠FEC,
在△AEG≌△EFC中,
∠AGE=∠ECF
AG=EC
∠BAE=∠FEC

∴△AEG≌△EFC(ASA)
②作FN⊥BC于N,
∴∠FNC=90°,
∴∠ABE=∠ENF.
∵△AEG≌△EFC,
∴AE=EF.
在△ABE和△ENF中,
∠ABE=∠ENF
∠BAE=∠FEC
AE=EF

∴△ABE≌△ENF(AAS),
∴FN=BE,
∵∠CFN=45°,
∴CF=
2
FN.
设AB=CD=AD=CD=2a,
∴BD=2
2
a,CF=
2
a,
AB
BD
=
2
2
CF
CD
=
2
2

AB
BD
=
CF
CD

∵∠ABD=∠FCD=45°,
∴△ABD△FCD,
∴∠ADB=∠FDC=45°,
∴∠BDF=90°,
∴DF⊥BD.
(2)CF=
2
BE.理由:
延长BA到M,使AM=CE,作FG⊥BC的延长线于G,
∴∠FGE=90°,
∴∠ABE=∠FGE.
在Rt△CFG中,由勾股定理.得
∴CF=
2
FG.
∴∠FGE=∠ABE.
∵∠AEF=90°,
∴∠FEG+∠AEB=90°.
∵∠BAE+∠AEB=90°,
∴∠BAE=∠FEG,
∴∠MAE=∠CEF.
∵AB=BC,
∴AB+AM=BC+CE,
即BM=BE.
∴∠M=45°,
∴∠M=∠FCE.
在△AME和△ECF中,
∠MAE=∠CEF
AM=CE
∠M=∠FCE

∴AE=EF,∠MAE=∠CEF,
∴∠BAE=∠GEF
在△ABE和△CGF中,
∠BAE=∠GEF
∠ABE=∠FGE
AE=EF

∴△ABE≌△CGF(AAS)
∴BE=FG,
∴CF=
2
BE.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
(3)在(1)(2)条件下,若AB=BC=12,BE=4,求DE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC,PF⊥CD,垂足分别为点E,F,连接AP,EF,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③PD=
2
EC;④△APD一定是等腰三角形.其中正确的结论有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知正方形ABCD,将一个45度角∝的顶点放在D点并绕D点旋转,角的两边分别交AB边和BC边于点E和F,连接EF.求证:EF=AE+CF
(1)小明是这样思考的:延长BC到G,使得CG=AE,连接DG,先证△DAE≌△DCG,再证△DEF≌△DGF,请你借助图2,按照小明的思路,写出完整的证明思路.
(2)刘老师看到这条题目后,问了小明两个小问题:①如果正方形的边长和△BEF的面积都等于6,求EF的长②将角∝绕D点继续旋转,使得角∝的两边分别和AB边延长线、BC边的延长线交于E和F,如图3所示,猜想EF、AE、CF三线段之间的数量关系并给予证明.请你帮忙解决.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形ABCD,M是BC上一点,连接AM,作AM的垂直平分线GH交AB于点G,交CD于点H,已知AM=10cm,求GH的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,l1、l2、l3、l4是同一平面内的四条平行直线,且每相邻的两条平行直线间的距离为h,面积是25的正方形ABCD的四个顶点分别在这四条直线上,那么h的值是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,直线a经过正方形ABCD的顶点A,分别过顶点B、D作BE⊥a于点E、DF⊥a于点F,若BE=4,DF=3,求EF的长及正方形的面积.(注:正方形的四边都相等,四个角都是直角)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知四边形ABCD是正方形,M、N分别是边BC、CD上的动点,正方形ABCD的边长为4cm.

(1)如图①,O是正方形ABCD对角线的交点,若OM⊥ON,求四边形MONC的面积;
(2)如图②,若∠MAN=45°,求△MCN的周长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知正方形ABCD中,对角线AC、BD交于O点,过O点作OE⊥OF分别交DC于E,交BC于F,∠FEC的角平分线EP交直线AC于P.
(1)①求证:OE=OF;
②写出线段EF、PC、BC之间的一个等量关系式,并证明你的结论;
(2)如图2,当∠EOF绕O点逆时针旋转一个角度,使E、F分别在CD、BC的延长线上,请完成图形并判断(1)中的结论①、②是否分别成立?若不成立,写出相应的结论(所写结论均不必证明).

查看答案和解析>>

同步练习册答案