分析 (1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;
(2)根据网格结构找出点A、B、C平移后的位置,然后顺次连接即可,再根据轴对称的性质确定出对称轴;
(3)设平移的距离为x,表示出A2、B2的坐标,再根据轴对称确定最短路线问题,点A2与B2关于y轴的对称点所在的直线经过点O时,OA2+OB2的值最小,然后列出方程求解即可.
解答
解:(1)△A1B1C1如图所示;
(2)△A2B2C2如图所示;
直线l为△A1B1C1与△A2B2C2的对称轴;
(3)设平移的距离为x,则A2(x,4),B2(-2+x,2),
由轴对称确定最短路线问题,点A2与B2关于y轴的对称点所在的直线经过点O时,OA2+OB2的值最小,
此时,点B2关于y轴的对称点为(2-x,2),
所以,$\frac{x}{4}$=$\frac{2-x}{2}$,
解得x=$\frac{4}{3}$,
即平移距离为$\frac{4}{3}$.
故答案为:$\frac{4}{3}$.
点评 本题考查了利用轴对称变换作图,利用平移变换作图,轴对称确定最短路线问题,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 1组 | B. | 2组 | C. | 3组 | D. | 0组 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\left\{\begin{array}{l}{x>-1}\\{x<3}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x<-1}\\{x>3}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x≥-1}\\{x≤3}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x≥-1}\\{x<3}\end{array}\right.$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com