精英家教网 > 初中数学 > 题目详情
已知ABCD是一个半径为R的圆的内接四边形,AB=12,CD=6,分别延长AB和DC,它们相交于P且BP=8,∠APD=60°,则R等于( )
A.10
B.2
C.12
D.14
【答案】分析:首先根据切割线定理即可计算出PC的长度是10,则PC=AP,以及,∠APD=60°,可以证明∠PCA=90°,在直角△ACD中根据勾股定理即可求得直径AD的长,从而求得半径的长.
解答:解:由切割线定理得PB•PA=PC•PD,
有 8×20=PC(PC+6).
解得PC=10.
如图,连接AC.
在△PAC中,由PA=2PC,∠APC=60°,得∠PCA=90°.
从而AD是圆的直径.由勾股定理,得
AD2=AC2+CD2=(PA2-PC2)+CD2=202-102+62=336.
∴AD==4
∴R=AD=2
故选B.
点评:本题主要考查了切割线定理,正确判定△ACD是直角三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:二次函数y=x2-kx+k+4的图象与y轴交于点C,且与x轴的正半轴交于A、B两点(点A在点B左侧).若A、B两点的横坐标为整数,
(1)确定这个二次函数的解析式并求它的顶点坐标;
(2)若点D的坐标是(0,6),点P(t,0)是线段AB上的一个动点,它可与点A重合,但不与点B重合.设四边形PBCD的面积为S,求S与t的函数关系式;
(3)若点P与点A重合,得到四边形ABCD,以四边形ABCD的一边为边,画一个三角形,使它的面积等于四边形ABCD的面积,并注明三角形高线的长.再利用“等底等高的三角形面积相等”的知识,画一个三角形,使它的面积等于四边形ABCD的面积(画示意图,不写计算和证明过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:矩形ABCD(字母顺序如图)的边长AB=3,AD=2,将此矩形放在平面直角坐标系xOy中,使AB在x轴正半轴上,而矩形的其它两个顶点在第一象限,且直线y=
3
2
x-1经过这两个顶点中的一个.
(1)求出矩形的顶点A、B、C、D的坐标;
(2)以AB为直径作⊙M,经过A、B两点的抛物线,y=ax2+bx+c的顶点是P点.
①若点P位于⊙M外侧且在矩形ABCD内部,求a的取值范围;
②过点C作⊙M的切线交AD于F点,当PF∥AB时,试判断抛物线与y轴的交点Q是位于直线y=
3
2
x-1的上方?还是下方?还是正好落在此直线上?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•兰州)如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=
2
3
x2+bx+c经过点B,且顶点在直线x=
5
2
上.
(1)求抛物线对应的函数关系式;
(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;
(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;
(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年贵州省贵阳市开阳县中考数学模拟试卷(解析版) 题型:解答题

如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上.
(1)求抛物线对应的函数关系式;
(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;
(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;
(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年4月中考数学模拟试卷(61)(解析版) 题型:解答题

如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上.
(1)求抛物线对应的函数关系式;
(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;
(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;
(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案