【题目】如图,直线y=﹣x+5与双曲线
(x>0)相交于A,B两点,与x轴相交于C点,△BOC的面积是
.若将直线y=﹣x+5向下平移1个单位,则所得直线与双曲线
(x>0)的交点有( )
![]()
A. 0个B. 1个C. 2个D. 0个,或1个,或2个
【答案】B
【解析】
试题令直线y=﹣x+5与y轴的交点为点D,过点O作OE⊥直线AC于点E,过点B作BF⊥x轴于点F,如图所示.
![]()
令直线y=﹣x+5中x=0,则y=5,即OD=5;
令直线y=﹣x+5中y=0,则0=﹣x+5,解得:x=5,即OC=5.
在Rt△COD中,∠COD=90°,OD=OC=5,∴tan∠DCO=
=1,∠DCO=45°.
∵OE⊥AC,BF⊥x轴,∠DCO=45°,∴△OEC与△BFC都是等腰直角三角形,又∵OC=5,∴OE=
.∵S△BOC=
BCOE=
BC=
,∴BC=
,∴BF=FC=
BC=1,∵OF=OC﹣FC=5﹣1=4,BF=1,∴点B的坐标为(4,1),∴k=4×1=4,即双曲线解析式为
.
将直线y=﹣x+5向下平移1个单位得到的直线的解析式为y=﹣x+5﹣1=﹣x+4,将y=﹣x+4代入到
中,得:
,整理得:
,∵△=16﹣4×4=0,∴平移后的直线与双曲线
只有一个交点.故选B.
科目:初中数学 来源: 题型:
【题目】如图,在底面是正三角形的三棱柱中,边AB,A'B'垂直于投影面P且AB,A'B'上的高所在截面平行于投影面,若已知CD的投影长为2 cm,CC'的投影长为6 cm.
(1)画出三棱柱在投影面P上的正投影;
(2)求出三棱柱的表面积.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C在⊙O上,CD⊥AB于D,且∠COD=60°,E为弧BC上一动点(不与点B、C重合),过E分别作于EF⊥AB于F,EG⊥OC于G.现给出以下四个命题:
①∠GEF=60°;②CD=GF;③△GEF一定为等腰三角形;④E在弧BC上运动时,存在某个时刻使得△GEF为等边三角形.
其中正确的命题是_____.(写出所有正确命题的序号)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,AD为斜边BC上的中线,AE∥BC,CE∥AD,EC的垂直平分线FG交AC点G,连接DG,若∠ADG=24°,则∠B的度数为_____度.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.
(1)求证:AC·CD=CP·BP;
(2)若AB=10,BC=12,当PD∥AB时,求BP的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,平面直角坐标系中,B、C两点的坐标分别为B(0,3)和C(0,﹣
),点A在x轴正半轴上,且满足∠BAO=30°.
![]()
(1)过点C作CE⊥AB于点E,交AO于点F,点G为线段OC上一动点,连接GF,将△OFG沿FG翻折使点O落在平面内的点O′处,连接O′C,求线段OF的长以及线段O′C的最小值;
(2)如图2,点D的坐标为D(﹣1,0),将△BDC绕点B顺时针旋转,使得BC⊥AB于点B,将旋转后的△BDC沿直线AB平移,平移中的△BDC记为△B′D′C′,设直线B′C′与x轴交于点M,N为平面内任意一点,当以B′、D′、M、N为顶点的四边形是菱形时,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把抛物线y=ax
+bx+c的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y=x
-3x+5,则a+b+c=__________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线经过点A(-1,0)、B(3,0)、C(0,3)三点。
(1)求抛物线的解析式。
(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N若点M的横坐标为m,请用m的代数式表示MN的长。
(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由。
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com