【题目】下面是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为( )
![]()
A.148B.152C.174D.202
【答案】C
【解析】
观察各图可知,第一个图案需要黑色棋子的个数为(1+2+3)×2(个),第二个图案需要的个数为[(1+2+3+4)×2+2×1](个),第三个图案需要的个数为[(1+2+3+4+5)×2+2×2](个),第四个图案需要的个数为[(1+2+3+4+5+6)×2+2×3](个)…由此可以推出第n个图案需要的个数为
(个),所以第10个图案需要的个数只需将n=10代入即可.
解:由图知第一个图案需要黑色棋子的个数为(1+2+3)×2(个);
第二个图案需要的个数为[(1+2+3+4)×2+2×1](个);
第三个图案需要的个数为[(1+2+3+4+5)×2+2×2](个);
第四个图案需要的个数为[(1+2+3+4+5+6)×2+2×3](个);
…
第n个图案需要的个数为
(个)
∴第10个图案需要的个数为[(1+2+3+4+5+6+7+8+9+10+11+12)×2+2×9=174(个)
故选C.
科目:初中数学 来源: 题型:
【题目】已知:如图,在平面直角坐标系中,点B的坐标为(1,0),以OB为边,在第一象限内作等边三角形OAB,过点A作AB的垂线,交x轴于点
,过点
作
的垂线,交y轴于点
,过点
作
的垂线,交x轴于点
,过点
作
的垂线,交y轴于点
,…,这样一直作下去,则点
的坐标为______.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】作图题:(要求保留作图痕迹,不写作法)
![]()
(1)作△ABC中BC边上的垂直平分线EF(交AC于点E,交BC于点F);
(2)连结BE,若AC=10,AB=6,求△ABE的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=﹣1,下列结论不正确的是( )
![]()
A.b2>4acB.abc>0
C.a﹣c<0D.am2+bm≥a﹣b(m为任意实数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】端午节是中国的传统节日.今年端午节前夕,遂宁市某食品厂抽样调查了河东某居民区市民对A、B、C、D四种不同口味粽子样品的喜爱情况,并将调查情况绘制成如图两幅不完整统计图:
![]()
(1)本次参加抽样调查的居民有 人.
(2)喜欢C种口味粽子的人数所占圆心角为 度.根据题中信息补全条形统计图.
(3)若该居民小区有6000人,请你估计爱吃D种粽子的有 人.
(4)若有外型完全相同的A、B、C、D棕子各一个,煮熟后,小李吃了两个,请用列表或画树状图的方法求他第二个吃的粽子恰好是A种粽子的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题探究:
小红遇到这样一个问题:如图1,
中,
,
,AD是中线,求AD的取值范围.她的做法是:延长AD到E,使
,连接BE,证明
,经过推理和计算使问题得到解决.
请回答:(1)小红证明
的判定定理是:__________________________________________;
(2)AD的取值范围是________________________;
方法运用:
(3)如图2,AD是
的中线,在AD上取一点F,连结BF并延长交AC于点E,使
,求证:
.
(4)如图3,在矩形ABCD中,
,在BD上取一点F,以BF为斜边作
,且
,点G是DF的中点,连接EG,CG,求证:
.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一块矩形地块
,
米,
米,为美观,拟种植不同的花卉,如图所示,将矩形
分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为
米.现决定在等腰梯形
和
中种植甲种花卉;在等腰梯形
和
中种植乙种花卉;在矩形
中种植丙种花卉.甲、乙、丙三种花卉的种植成本分别为20元/米
、60 元/米
、40元/米
,设三种花卉的种植总成本为
元.
![]()
(1)当
时,求种植总成本
;
(2)求种植总成本
与
的函数表达式,并写出自变量
的取值范围;
(3)若甲、乙两种花卉的种植面积之差不超过120米
,求三种花卉的最低种植总成本.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】筒车是我国古代利用水力驱动的灌溉工具,唐代陈廷章在《水轮赋》中写道:“水能利物,轮乃曲成”.如图,半径为
的筒车
按逆时针方向每分钟转
圈,筒车与水面分别交于点
、
,筒车的轴心
距离水面的高度
长为
,简车上均匀分布着若干个盛水筒.若以某个盛水筒
刚浮出水面时开始计算时间.
![]()
(1)经过多长时间,盛水筒
首次到达最高点?
(2)浮出水面3.4秒后,盛水筒
距离水面多高?
(3)若接水槽
所在直线是
的切线,且与直线
交于点
,
.求盛水筒
从最高点开始,至少经过多长时间恰好在直线
上.(参考数据:
,
,
)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2017广东省)如图,AB是⊙O的直径,AB=
,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.
(1)求证:CB是∠ECP的平分线;
(2)求证:CF=CE;
(3)当
时,求劣弧
的长度(结果保留π)
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com