精英家教网 > 初中数学 > 题目详情
精英家教网如图,在梯形ABCD中,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD的中点.
(1)求证:△CDE∽△EAB;
(2)△CDE与△CEB有可能相似吗?若相似,请给出证明过程;若不相似,请简述理由.
分析:(1)过点C作CF⊥AB,垂足为F,由题意可得四边形AFCD是矩形,从而可得到CD、AF、BF,CF、AD、DE的长,根据两组对应边的比相等且相应的夹角相等的两个三角形相似可得到△CDE∽△EAB;
(2)利用勾股定理可求得CE、BE的长,利用三组对应边的比相等的两个三角形相似可得到△CDE∽△CEB.
解答:精英家教网(1)证明:过点C作CF⊥AB,垂足为F,如图.
∵∠A=90°,∠CFB=90°,∴AD∥CF.
∵AB∥CD,∴四边形AFCD是平行四边形.
又∵∠A=90°,∴平行四边形AFCD是矩形.(1分)
∴AF=CD=1.
∴BF=AB-AF=AB-CD=2-1=1.(1分)
在Rt△CBF中,CF=
BC2-BF2
=
32-12
=
8
=
2×4
=2
2

∵E是AD的中点,AD=CF=2
2
,∴DE=EA=
2
.(1分)
DE
AB
=
2
2
CD
AE
=
1
2
=
2
2
,∴
DE
AB
=
CD
AE
.(2分)
又∵∠CDE=∠EAB=90°,
∴△CDE∽△EAB.(1分)

(2)解:△CDE∽△CEB.(1分)
理由如下(本题方法很多,这里仅提供一种方法,其他方法请参照评分).
在Rt△CDE中,CE=
CD2+DE2
=
12+(
2
)
2
=
3
,(1分)
在Rt△CBF中,BE=
AE2+AB2
=
(
2
)
2
+22
=
6
.(1分)
CE
CD
=
3
1
BE
DE
=
6
2
=
3
1
BC
CE
=
3
3
=
3
1
,(1分)
CE
CD
=
BE
DE
=
BC
CE
.(1分)
∴△CDE∽△CEB.(1分)
点评:此题考查学生对相似三角形的判定方法的理解及运用能力,难易程度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案