精英家教网 > 初中数学 > 题目详情
我国是发现和研究勾股定理最古老的国家之一,勾股定理如下:在直角三角形中,两直角边的平方和等于斜边的平方.如图1,△ABC是直角三角形,∠C是直角,则有AC2+BC2=AB2,请解答下列问题:
(1)如图2,△ABC是直角三角形,∠C是直角,直角边AC=4,斜边AB=5,请用勾股定理计算直角边CB,则CB=
 

(2)如图2,在(1)的条件下,D是BC边上一点且2CD-3BD=1,则CD=
 
,BD=
 

(3)如图2,在(2)的条件下,若∠DAB=α,用课堂学习过的知识求∠B(用α表示).精英家教网
分析:(1)根据勾股定理可得CB2=AB2-AC2,代入即可得出CB的长度.
(2)由(1)可得CD+DB=3,结合2CD-3BD=1,可解出CD及BD的值.
(3)利用反三角函数可得出∠ADC的值,从而利用三角形的外角的知识可表示出∠B.
解答:解:(1)由题意得,CB2=AB2-AC2
∴可求得CB=
52-42
=3.

(2)由已知条件可得:
CD+DB=3
2CD-3BD=1

解得:
CD=2
BD=1


(3)tan∠ADC=
AC
CD
=2,
∴∠ADC=arctan2,
故可得∠B=∠ADC-∠DAB=arctan2-α.
点评:本题考查勾股定理及反三角函数的知识,难度一般,解答本题的关键是仔细阅读题目,利用勾股定理解出(1)(2),然后利用反三角函数及三角形的外角可求出(3).
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读材料并解答问题:
我国是最早了解和应用勾股定理的国家之一,古代印度、希腊、阿拉伯等许多国家也都很重视对勾股定理的研究和应用,古希腊数学家毕达哥拉斯首先证明了勾股定理,在西方,勾股定理又称为“毕达哥拉斯定理”.
关于勾股定理的研究还有一个很重要的内容是勾股数组,在《几何》课本中我们已经了解到,“能够成为直角三角形三条边的三个正整数称为勾股数”,以下是毕达哥拉斯等学派研究出的确定勾股数组的两种方法:
方法1:若m为奇数(m≥3),则a=m,b=
1
2
(m2-1)和c=
1
2
(m2+1)是勾股数.
方法2:若任取两个正整数m和n(m>n),则a=m2-n2,b=2mn,c=m2+n2是勾股数.
(1)在以上两种方法中任选一种,证明以a,b,c为边长的△ABC是直角三角形;
(2)请根据方法1和方法2按规律填写下列表格:
精英家教网
(3)某园林管理处要在一块绿地上植树,使之构成如下图所示的图案景观,该图案由四个全等的直角三角形组成,要求每个三角形顶点处都植一棵树,各边上相邻两棵树之间的距离均为1米,如果每个三角形最短边上都植6棵树,且每个三角形的各边长之比为5:12:13,那么这四个直角三角形的边长共需植树
 
棵.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

我国是最早了解和应用勾股定理的国家之一,古代印度、希腊、阿拉伯等许多国家也都很重视对勾股定理的研究和应用,古希腊数学家毕达哥拉斯首先证明了勾股定理,在西方,勾股定理又称为“毕达哥拉斯定理”.
关于勾股定理的研究还有一个很重要的内容是勾股数组,在《几何》课本中我们已经了解到,“能够成为直角三角形三条边的三个正整数称为勾股数”,以下是毕达哥拉斯等学派研究出的确定勾股数组的两种方法:
方法1:若m为奇数(m≥3),则a=m,b=数学公式(m2-1)和c=数学公式(m2+1)是勾股数.
方法2:若任取两个正整数m和n(m>n),则a=m2-n2,b=2mn,c=m2+n2是勾股数.
(1)在以上两种方法中任选一种,证明以a,b,c为边长的△ABC是直角三角形;
(2)请根据方法1和方法2按规律填写下列表格:

(3)某园林管理处要在一块绿地上植树,使之构成如下图所示的图案景观,该图案由四个全等的直角三角形组成,要求每个三角形顶点处都植一棵树,各边上相邻两棵树之间的距离均为1米,如果每个三角形最短边上都植6棵树,且每个三角形的各边长之比为5:12:13,那么这四个直角三角形的边长共需植树______棵.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

我国是发现和研究勾股定理最古老的国家之一,勾股定理如下:在直角三角形中,两直角边的平方和等于斜边的平方.如图1,△ABC是直角三角形,∠C是直角,则有AC2+BC2=AB2,请解答下列问题:
(1)如图2,△ABC是直角三角形,∠C是直角,直角边AC=4,斜边AB=5,请用勾股定理计算直角边CB,则CB=______;
(2)如图2,在(1)的条件下,D是BC边上一点且2CD-3BD=1,则CD=______,BD=______.
(3)如图2,在(2)的条件下,若∠DAB=α,用课堂学习过的知识求∠B(用α表示).

查看答案和解析>>

科目:初中数学 来源:北京期末题 题型:解答题

我国是发现和研究勾股定理最古老的国家之一,勾股定理如下:在直角三角形中,两直角边的平方和等于斜边的平方,如图1,△ABC是直角三角形,∠C是直角,则有AC2+BC2=AB2,请解答下列问题:
(1)如图2,△ABC是直角三角形,∠C是直角,直角边AC=4,斜边AB=5,请用勾股定理计算直角边CB,则CB=_______;
(2)如图2,在(1)的条件下,D是BC边上一点且2CD﹣3BD=1,则CD= _________ ,BD=__________;
(3)如图2,在(2)的条件下,若∠DAB=α,用课堂学习过的知识求∠B(用α表示)。

查看答案和解析>>

同步练习册答案