精英家教网 > 初中数学 > 题目详情
已知抛物线y=ax2+bx+c与y轴交于点C,与x轴交于点A(x1,0)、B(x2,0)(x1<x2),顶点M的纵坐标为-4,若x1、x2是方程x2-2(m-1)x+m2-7=0的两个根,且x21+x22=10.
(1)求A、B两点的坐标;
(2)求抛物线的解析式及点C的坐标;
(3)在抛物线上是否存在点P,使三角形PAB的面积等于四边形ACMB的面积的2倍?若存在,求出所有符合条件的点的坐标;若不存在,请说明理由.
(1)∵x1,x2是方程x2-2(m-1)x+m2-7=0的两个根,
∴x1+x2=2(m-1),x1•x2=m2-7.
又∵x12+x22=10,
∴(x1+x22-2x1x2=10,
∴[2(m-1)]2-2(m2-7)=10,
即m2-4m+4=0.
解得:m1=m2=2.
将m=2代入方程x2-2(m-1)x+m2-7=0,
得:x2-2x-3=0,
解得:x1=-1,x2=3.
∴点A的坐标为(-1,0),点B的坐标为(3,0).

(2)因为抛物线与x轴的交点为A(-1,0)、B(3,0),由对称性可知,顶点M的横坐标为1,则顶点M的坐标为(1,-4).
a-b+c=0
9a+3b+c=0
a+b+c=-4

解得:
a=1
b=-2
c=-3

∴抛物线的解析式为y=x2-2x-3.
在y=x2-2x-3中,
令x=0,得y=-3.
∴点C的坐标为(0,-3).

(3)设抛物线的对称轴与x轴交于点D,
则AO=OD=1,DB=2,OC=3,
DM=4,AB=4.
∴S四边形ACMB=S△ACO+S梯形OCMD+S△DMB
=
1
2
•AO•CO+
1
2
(CO+MD)+
1
2
DB•MD
=
1
2
×1×3+
1
2
×(3+4)×1+
1
2
×2×4=9.
设P(x0,y0)为抛物线上一点,
则S△PAB=
1
2
AB•|y0|.
若S△PAB=2S四边形ACMB
1
2
•AB•|y0|=18,
∴丨y0丨=9,y0=±9.
将y0=9代入y=x2-2x-3中,得x2-2x-3=9,
即x2-2x-12=0,
解得:x1=1-
13
,x2=1+
13

将y0=-9代入y=x2-2x-3中,得:x2-2x-3=-9,
即x2-2x+6=0.
∵△=(-2)2-4×1×6=-20<0,
∴此方程无实数根.
∴符合条件的点P有两个:P1(1-
13
,9),P2(1+
13
,9).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图所示,是一条高速公路的隧道口在平面直角坐标系上的示意图,点A和A1、点B和B1分别关于y轴对称,隧道拱部分BCB1为一条抛物线,最高点C离路面AA1的距离为8米,点B离路面为6米,隧道的宽度AA1为16米;则隧道拱抛物线BCB1的函数解析式______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线y=2x+2交y轴于点A,交x轴于点B,直线l:y=-3x+9
(1)求经过A、B、C三点的抛物线的函数关系式,并指出此函数的函数值随x的增大而增大时,x的取值范围;
(2)若点E在(1)中的抛物线上,且四边形ABCE是以BC为底的梯形,求梯形ABCE的面积;
(3)在(1)、(2)的条件下,过E作直线EF⊥x轴,垂足为G,交直线l于F.在抛物线上是否存在点H,使直线l、FH和x轴所围成的三角形的面积恰好是梯形ABCE面积的
1
2
?若存在,求点H的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系,y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.
(1)求抛物线的解析式;
(2)一辆货运卡车高4.5m,宽2.4m,它能通过该隧道吗?
(3)如果该隧道内设双行道,为了安全起见,在隧道正中间设有0.4m的隔离带,则该辆货运卡车还能通过隧道吗?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=x2+bx+c经过点(1,-4)和(-1,2).求抛物线解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,将△AOB置于平面直角坐标系中,其中点O为坐标原点,点A的坐标为(3,0),∠ABO=60度.
(1)若△AOB的外接圆与y轴交于点D,求D点坐标.
(2)若点C的坐标为(-1,0),试猜想过D,C的直线与△AOB的外接圆的位置关系,并加以说明.
(3)二次函数的图象经过点O和A且顶点在圆上,求此函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线与x轴交于A(m,0)、B(n,0)两点,与y轴交于点C(0,3),点P是抛物线的顶点,若m-n=-2,m•n=3.
(1)求抛物线的表达式及P点的坐标;
(2)求△ACP的面积S△ACP

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为
5
.设⊙M与y轴交于D,抛物线的顶点为E.
(1)求m的值及抛物线的解析式;
(2)设∠DBC=α,∠CBE=β,求sin(α-β)的值;
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某大众汽车经销商在销售某款汽车时,以高出进价20%标价.已知按标价的九折销售这款汽车9辆与将标价直降0.2万元销售4辆获利相同.
(1)求该款汽车的进价和标价分别是多少万元?
(2)若该款汽车的进价不变,按(1)中所求的标价出售,该店平均每月可售出这款汽车20辆;若每辆汽车每降价0.1万元,则每月可多售出2辆.求该款汽车降价多少万元出售每月获利最大?最大利润是多少?

查看答案和解析>>

同步练习册答案