精英家教网 > 初中数学 > 题目详情
如图,在矩形ABCD中,AB=6厘米,BC=12厘米,点P从点A出发,沿边AB向点B以1厘米/秒的速度移动,同时,Q点从B点出发沿边BC向点C以2厘米/秒的速度移动,如果P、Q两点分别到达B、C两点后精英家教网就停止移动.据此解答下列问题:
(1)运动开始第几秒后,△PBQ的面积等于8平方厘米;
(2)设运动开始后第t秒时,五边形APQCD的面积为S平方厘米,写出S与t的函数关系式,并指出自变量的取值范围;
(3)求出S的最小值及t的对应值.
分析:(1)我们可通过设运动时间,用方程来求出这个时间值,如果设运动的时间为x秒,那么根据P、Q的速度,我们可得出AP=x,BQ=2x,那么BP=6-x.由此可根据三角形的面积公式来得出方程:
1
2
×BP×BQ=
1
2
(6-x)×2x=6x-x2=8.即:x2-6x+8=0,解得x=2,x=4,这样就求出了时间的值;
(2)求五边形APQCD的面积,我们可先求出三角形的面积,然后根据五边形的面积=矩形ABCD的面积-三角形BPQ的面积来列函数式,三角形的面积表示方法我们已经在(1)中得出,只需将x换成t,而矩形的长和宽都已知,因此可根据上面的等量关系来列出S、t的函数式.根据边长不为负数可得出t的取值范围;
(3)此题求的是二次函数的最值问题,根据(2)的函数的性质以及自变量的取值范围,用配方法或公式法求解都可以.
解答:解:(1)运动开始第2秒或第4秒时,△PBQ的面积等于8平方厘米;

(2)根据题意,得S=6×12-
1
2
(6-t)•2t,
所以S=t2-6t+72,其中t大于0且小于6;

(3)由S=t2-6t+72,得S=(t-3)2+63.
因为t大于0,
所以当t=3秒时,S最小=63平方厘米.
点评:本题主要考查了二次函数的应用,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点A出发以1cm/s的速度向点B运动,点Q从点B出发以2cm/s的速度向点C运动,设经过的时间为xs,△PBQ的面积为ycm2,则下列图象能反映y与x之间的函数关系的是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE精英家教网
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在矩形 ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿 D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.
(1)请解释图中点H的实际意义?
(2)求P、Q两点的运动速度;
(3)将图②补充完整;
(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=6,则AD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,BC=6,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与AB交于点F,设CE=x,BF=y.
(1)求y与x的函数关系式;
(2)x为何值时,y的值最大,最大值是多少?
(3)若设线段AB的长为m,上述其它条件不变,m为何值时,函数y的最大值等于3?

查看答案和解析>>

同步练习册答案