精英家教网 > 初中数学 > 题目详情
7.如图,某人在山坡坡脚A处测得电视塔BC塔尖B的仰角为60°,沿山坡AM走到D处测得塔尖B的仰角为30°,已知AC为100米,山坡坡度i=1:3,C、A、E三点在同一直线上.求此人所在位置点D的铅直高度DE.(结果保留根号形式)

分析 作DH⊥BC于H,根据正切的定义求出BC,设DE=x,根据正切的定义用x表示出BH,根据题意列出方程,解方程即可.

解答 解:作DH⊥BC于H,
在Rt△ACB中,tan∠BAC=$\frac{BC}{AC}$,
则BC=AC•tan60°=100$\sqrt{3}$,
设DE=x,则AE=3x,CE=100+3x,
在Rt△BHD中,tan∠BDH=$\frac{BH}{DH}$,
∴BH=(100+3x)•$\frac{\sqrt{3}}{3}$,
∴100$\sqrt{3}$-x=(100+3x)•$\frac{\sqrt{3}}{3}$,
解得,x=$\frac{300-100\sqrt{3}}{3}$,
答:此人所在位置点D的铅直高度DE为$\frac{300-100\sqrt{3}}{3}$米.

点评 本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.已知二次函数y=x2+bx+c的图象与直线y=x+1相交于点A(-1,m)和点B(n,5).
(1)求该二次函数的关系式;
(2)在给定的平面直角坐标系中,画出这两个函数的大致图象;
(3)结合图象直接写出x2+bx+c>x+1时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.解方程
(1)4-3x=6-5x
(2)3x-4(x-1)=2(x+5)
(3)$\frac{x+1}{2}$-1=$\frac{2-3x}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图(a),将两块直角三角尺的直角顶点C叠放在一起.
(1)若∠DCE=35°,∠ACB=145°;若∠ACB=140°,则∠DCE=40°;
(2)猜想∠ACB与∠DCE的大小有和特殊关系,并说明理由;
(3)如图(b),若是两个同样的三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的大小有何关系,请说明理由;
(4)已知∠AOB=α,∠COD=β(α,β都是锐角),如图(c),若把它们的顶点O重合在一起,请直接写出∠AOD与∠BOC的大小关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.解方程组:
(1)$\left\{\begin{array}{l}{x+y=5}\\{2x+y=8}\end{array}\right.$
(2)$\left\{\begin{array}{l}{2x-5y=7}\\{3x+2y=1}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知点A在数轴上对应的有理数为a,将点A向左移动6个单位长度,再向右移动2个单位长度与点B重合,点B对应的有理数为-24.
(1)求a;
(2)如果数轴上的点C在数轴上移动3个单位长度后,距B点8个单位长度,那么移动前的点C距离原点有几个单位长度?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,已知△ABC是等边三角形,且AE=CD,AD、BE相交于P,BQ⊥AD于Q.
(1)求证:△ABE≌△CAD;
(2)求∠PBQ的度数;
(2)求证:BP=2PQ.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.小明和小亮用如图所示的两个转盘(每个转盘被分成三个面积相等的扇形)做游戏,转动两个转盘各一次,若两次数字之和为奇数,则小明胜;若两次数字之和为偶数,则小亮胜,这个游戏对双方公平吗?说说你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,根据道路管理规定,直线l的路段上行驶的车辆,限速60千米/时,已知测速站点M距离直线l的距离MN为30米(如图所示),现有一辆汽车匀速行驶,测得此车从A点行驶到B点所用时间为6秒,∠AMN=60°,∠BMN=45°.
(1)计算AB的长;
(2)通过计算判断此车是否超速.($\sqrt{2}$≈1.4,$\sqrt{3}$≈1.7)

查看答案和解析>>

同步练习册答案