精英家教网 > 初中数学 > 题目详情

将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.

(1)当m=3时,点B的坐标为        ,点E的坐标为         

(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.

(3)如图,若点E的纵坐标为-1,抛物线(a≠0且a为常数)的顶点落在△ADE的内部,求a的取值范围.

 

【答案】

解:(1)点B的坐标为(3,4),点E的坐标为(0,1)。

(2)点E能恰好落在x轴上。理由如下:

∵四边形OABC为矩形,∴BC=OA=4,∠AOC=∠DCE=90°。

由折叠的性质可得:DE=BD=OA-CD=4-1=3,AE=AB=OC=m。

如图1,假设点E恰好落在x轴上,

在Rt△CDE中,由勾股定理可得

则有

在Rt△AOE中,OA2+OE2=AE2

,解得

(3)如图2,过点E作EF⊥AB于F,EF分别与AD、OC交于点G、H,过点D作DP⊥EF于点P,则EP=PH+EH=DC+EH=2,

在Rt△PDE中,由勾股定理可得

∴BF=DP=

在Rt△AEF中,AF=AB−BF=m−,EF=5,AE=m,

∵AF2+EF2=AE2,即,解得m=3

∴AB=3,AF=2,E(2,-1)。

∵∠AFG=∠ABD=90°,∠FAG=∠BAD,∴△AFG∽△ABD。

,即,解得FG=2。∴EG=EF-FG=3。∴点G的纵坐标为2。

∴此抛物线的顶点必在直线x=2上。

又∵抛物线的顶点落在△ADE的内部,

∴此抛物线的顶点必在EG上。

∴-1<10-20a<2,解得

∴a的取值范围为

【解析】

试题分析:(1)根据点A、点D、点C的坐标和矩形的性质可以得到点B和点E的坐标。

(2)由折叠的性质求得线段DE和AE的长,然后利用勾股定理得到有关m的方程,求得m的值即可。

(3)过点E作EF⊥AB于F,EF分别与 AD、OC交于点G、H,过点D作DP⊥EF于点P,首先利用勾股定理求得线段DP的长,从而求得线段BF的长,再利用△AFG∽△ABD得到比例线段求得线段FG的长,最后求得a的取值范围。

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•晋江市)将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.
(1)当m=3时,点B的坐标为
(3,4)
(3,4)
,点E的坐标为
(0,1)
(0,1)

(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.
(3)如图,若点E的纵坐标为-1,抛物线y=ax2-4
5
ax+10
(a≠0且a为常数)的顶点落在△ADE的内部,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.

(1)当m=3时,点B的坐标为        ,点E的坐标为         

(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.

(3)如图,若点E的纵坐标为-1,抛物线(a≠0且a为常数)的顶点落在△ADE的内部,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源:2013年福建省泉州市晋江市初中学业质量检查数学试卷(二)(解析版) 题型:解答题

将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.
(1)当m=3时,点B的坐标为______,点E的坐标为______;
(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.
(3)如图,若点E的纵坐标为-1,抛物线(a≠0且a为常数)的顶点落在△ADE的内部,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源:2013年福建省泉州市晋江市中考数学试卷(解析版) 题型:解答题

将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.
(1)当m=3时,点B的坐标为______,点E的坐标为______;
(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.
(3)如图,若点E的纵坐标为-1,抛物线(a≠0且a为常数)的顶点落在△ADE的内部,求a的取值范围.

查看答案和解析>>

同步练习册答案