【题目】互联网给生活带来极大的方便据报道,2016底全球支付宝用户数为4.5亿,2018年底达到9亿.
(1)求平均每年增长率;
(2)据此速度,2020底全球支付宝用户数是否会超过17亿?请说明理由.(参考数据:
≈1.414)
【答案】(1) 41.4%;(2)见解析.
【解析】
(1)设平均每年增长率为x,根据2016年底及2018年底全球支付宝用户数,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
(2)根据2020年底全球支付宝用户数=2018年底全球支付宝用户数×(1+增长率)2,即可求出2020年底全球支付宝用户数,将其与17亿比较后即可得出结论.
(1)设平均每年增长率为x,
依题意,得:4.5(1+x)2=9,
解得:x1=0.414=41.4%,x2=﹣2.414(舍去).
答:平均每年增长率为41.4%.
(2)9×(1+41.4%)2≈17.995(亿).
∵17.995>17,
∴2020底全球支付宝用户数会超过17亿.
科目:初中数学 来源: 题型:
【题目】为了丰富校园文化生活,某校计划在午间校园广播台播放“百家讲坛”的部分内容为了了解学生的喜好,抽取若干名学生进行问卷调查(每人只选一项内容),整理调查结果,绘制统计图如下:
![]()
请根据统计图提供的信息回答以下问题:
(1)这一调查属于_______(选填“抽样调查”或“普查”),抽取的学生数为_____名;
(2)估计喜欢收听易中天《品三国》的学生约占全校学生的____%(精确到小数点后一位);
(3)已知该校女学生共有1800名,则该校喜欢收听刘心武评《红楼梦》的女学生大约有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,
是矩形
内部的一定点,
是
边上一动点,连接
并延长与矩形
的一边交于点
,连接
.已知
,设
,
两点间的距离为
,
,
两点间的距离为
,
,
两点间的距离为
.小欣根据学习函数的经验,分别对函数
,
随自变量
的变化而变化的规律进行了探究.下面是小欣的探究过程,请补充完整;
![]()
(1)按照如表中自变量
的值进行取点、画图、测量,分别得到了
,
与
的几组对应值;
| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 6.30 | 5.40 | ______ | 4.22 | 3.13 | 3.25 | 4.52 |
| 6.30 | 6.34 | 6.43 | 6.69 | 5.75 | 4.81 | 3.98 |
(2)在同一平面直角坐标系
中,描出以补全后的表中各组对应值所对应的点
,并画出函数
的图象;
(3)结合函数图象,解决问题:当
为等腰三角形时,
的长度约为______
.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,在△ABC中,∠B=45°,点D是BC边的中点,DE⊥BC于点D,交AB于点E,连接CE.
(1)求∠AEC的度数;
(2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是( )
![]()
A. 18+36π B. 24+18π C. 18+18π D. 12+18π
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.
(1)求该型号自行车的进价和标价分别是多少元?
(2)若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线L:y=
x,点A坐标为(0,1),过点A作y轴的垂线交直线L于点B1以OB1为边作等边三角形OA1B1,再过点A1作y轴的垂线交直线L于点B2,以OB2为边作等边三角形OA2B2,……,按此做法进行下去,点A2019的坐标为_____.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com