精英家教网 > 初中数学 > 题目详情
3.如图,在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB上的点,把△ABC沿着直线DE折叠,使顶点B的对应点B′落在直角边AC的中点上,求CE的长.

分析 设CE=x,则BE=8-x;在Rt△B'CE中,根据勾股定理列出关于x的方程,解方程即可解决问题.

解答 解:∵点B′落在AC的中点,
∴CB′=$\frac{1}{2}$AC=3,
设CE=x,则BE=8-x,
由折叠得:B'E=BE=8-x,
在Rt△B'CE中,由勾股定理得x2+32=(8-x)2
解得:x=$\frac{55}{16}$,
即CE的长为:$\frac{55}{16}$.

点评 该题主要考查了翻折变换的性质及其应用,解题的关键是灵活运用翻折变换的性质,找出图形中隐含的等量关系,借助勾股定理列方程进行解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.如图所示的方格纸中,每一个小正方形的边长都是1,网格中有一个格点三角形ABC.
(1)以直线l为对称轴,在图中直接作出△ABC的轴对称图形△A′B′C′.
(2)在直线l右侧,在△A′B′C′外部,画出以B′C′为腰的一个等腰直角三角形DB′C′.
(3)计算△DB′C′的面积,并通过面积求出B′C′的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,一副三角板的两个直角顶点重合在一起.
(1)若∠EON=110°,求∠MOF的度数;
(2)比较∠EOM与∠FON的大小,并写出理由;
(3)求∠EON+∠MOF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知二次函数y=x2-(2m+1)+($\frac{1}{2}$m2-1).
(1)求证:不论m取什么实数,该二次函数图象与x轴总有两个交点;
(2)若该二次函数图象经过点(2m-2,-2m-1),求该二次函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.解不等式组:$\left\{\begin{array}{l}{5x>2x+3}\\{3x-1<8}\end{array}\right.$,并把解集表示在数轴上.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.若平面直角坐标系中的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”.规定“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}.
(1)若动点P从坐标点M(1,1)出发,按照“平移量”{2,0}平移到N,再按照“平移量”{1,2}平移到G,形成△MNG,则点N的坐标为(3,1),点G的坐标为(4,3).
(2)若动点P从坐标原点出发,先按照“平移量”m平移到B,再按照“平移量”n平移到C;最后按照“平移量”q平移回到点O.当△OBC∽△MNG(在(1)中的三角形).且相似比为2:1时,请你直接写出“平移量”m{4,0}或{4,0}或{-4,0}或{-4,0},n{2,4}或{2,-4}或{-2,4}或{2,4},q{-6,-4}或{-6,4}或{6,4}或{6,-4}.
(3)在(1)、(2)的前提下,请你在平面直角坐标系中画出△OBC与△MNG.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:
(1)($\sqrt{3}$-π)0-$\frac{\sqrt{20}-\sqrt{15}}{\sqrt{5}}$+(-1)2017
(2)$\frac{8}{\sqrt{2}}$-($\sqrt{12}$-3$\sqrt{\frac{1}{3}}$)×$\sqrt{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算:2-2-$\root{3}{-\frac{1}{8}}$-$\sqrt{(-\frac{3}{4})^{2}}$+(-2017)0

查看答案和解析>>

同步练习册答案