精英家教网 > 初中数学 > 题目详情
精英家教网如图甲、乙所示,正方形网格中的每个小正方形的边长为1,每个小格中的顶点叫做格点,以格点为顶点分别按下列要求画出三角形.
(1)使三角形的三边长分别为2,
2
2
(在图甲中画出一个即可).
(2)使三角形为等腰三角形且面积为4,在图乙中画出一个即可.
分析:(1)
2
为直角边长为1,1的直角三角形的斜边,分别画出3条顺次连接的线段即可;
(2)可画一个底边长为4,底边上的高为2的等腰三角形即可.
解答:精英家教网解:(1)△ABC就是所求的三角形;
(2)△DEF就是所求的三角形.
点评:考查在格点中画三角形;得到边长为无理数的线段的长度及所画三角形的底边及底边上的高是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、(任选一题,若两题都选按得分最少的题记分)
(1)甲乙两辆汽车在一条公路上匀速行驶,为了确定汽车的位置,我们用数轴Ox表示这条公路,原点O为零千米路标(如图1),并作如下约定:
①速度v>0,表示汽车向数轴正方向行驶;速度v<0,表示汽车向数轴负方向行驶;速度v=0,表示汽车静止.
②汽车位置在数轴上的坐标s>0,表示汽车位于零千米路标的右侧;汽车位置在数轴上的坐标s<0,表示汽车位于零千米路标的左侧;汽车位置在数轴上的坐标s=0,表示汽车恰好位于零千米路标处.
遵照上述约定,将这两辆汽车在公路上匀速行驶的情况,以一次函数图象的形式画在了同一直角坐标系中,如图2,请解答下列问题:
①就这两个一次函数图象所反映的两汽车在这条公路上行驶的状况填写如下的表格.

②甲乙两车能否相遇?如能相遇,求相遇时的时刻及在公路上的位置;如不能相遇,请说明理由.

(2)在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余的高度y(cm)与燃烧时间x(分钟)的关系如下图所示,根据图象提供的信息解答下列问题:
①指出两根蜡烛燃烧前的高度;
②分别求出甲、乙两根蜡烛燃烧时y与x之间的函数关系式;
③x为何值时,甲、乙两根蜡烛在燃烧过程中的高度相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图甲所示,已知抛物线经过原点O和x轴上另一点E,顶点M的坐标为(2,4);
(1)求抛物线函数关系式;
(2)矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3,将矩形ABCD以每秒1个单位长度的速度从图甲所示的位置沿x轴的正方向匀速平移,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图乙所示).
①当t=
52
时,判断点P是否在直线ME上,并说明理由;
②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由;
③现将甲图中的抛物线向右平移m(m>0)个单位,所得抛物线与x轴交于G、F两点,与原抛物线交于点Q,设△FGQ的面积为S,求S关于m的函关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(1)甲乙两辆汽车在一条公路上匀速行驶,为了确定汽车的位置,我们用数轴Ox表示这条公路,原点O为零千米路标(如图1),并作如下约定:
①速度v>0,表示汽车向数轴正方向行驶;速度v<0,表示汽车向数轴负方向行驶;速度v=0,表示汽车静止.
②汽车位置在数轴上的坐标s>0,表示汽车位于零千米路标的右侧;汽车位置在数轴上的坐标s<0,表示汽车位于零千米路标的左侧;汽车位置在数轴上的坐标s=0,表示汽车恰好位于零千米路标处.
遵照上述约定,将这两辆汽车在公路上匀速行驶的情况,以一次函数图象的形式画在了同一直角坐标系中,如图2,请解答下列问题:
①就这两个一次函数图象所反映的两汽车在这条公路上行驶的状况填写如下的表格.

 行驶方向速度的大小(km/h)出发前的位置
甲车   
乙车   

②甲乙两车能否相遇?如能相遇,求相遇时的时刻及在公路上的位置;如不能相遇,请说明理由.

(2)在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余的高度y(cm)与燃烧时间x(分钟)的关系如下图所示,根据图象提供的信息解答下列问题:
①指出两根蜡烛燃烧前的高度;
②分别求出甲、乙两根蜡烛燃烧时y与x之间的函数关系式;
③x为何值时,甲、乙两根蜡烛在燃烧过程中的高度相等.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年浙江省衢州市江山二中九年级(上)第一次质量检测数学试卷(解析版) 题型:解答题

如图甲所示,已知抛物线经过原点O和x轴上另一点E,顶点M的坐标为(2,4);
(1)求抛物线函数关系式;
(2)矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3,将矩形ABCD以每秒1个单位长度的速度从图甲所示的位置沿x轴的正方向匀速平移,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图乙所示).
①当时,判断点P是否在直线ME上,并说明理由;
②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由;
③现将甲图中的抛物线向右平移m(m>0)个单位,所得抛物线与x轴交于G、F两点,与原抛物线交于点Q,设△FGQ的面积为S,求S关于m的函关系式.

查看答案和解析>>

科目:初中数学 来源:山东省期中题 题型:解答题

(1)甲乙两辆汽车在一条公路上匀速行驶,为了确定汽车的位置,我们用数轴O表示这条公路,原点O为零千米路标(如图1),并作如下约定:
①速度v>0,表示汽车向数轴正方向行驶;速度v<0,表示汽车向数轴负方向行驶;速度v=0,表示汽车静止。
②汽车位置在数轴上的坐标s>0,表示汽车位于零千米路标的右侧;汽车位置在数轴上的坐标s<0,表示汽车位于零千米路标的左侧;汽车位置在数轴上的坐标s=0,表示汽车恰好位于零千米路标处,遵照上述约定,将这两辆汽车在公路上匀速行驶的情况,以一次函数图象的形式画在了同一直角坐标系中,如图2。
请解答下列问题:
①就这两个一次函数图像所反映的两汽车在这条公路上行驶的状况填写如下的表格:
 
行驶方向
速度的大小(km/h)
出发前的位置
甲车
 
 
 
乙车
 
 
 
②甲乙两车能否相遇?如能相遇,求相遇时的时刻及在公路上的位置;如不能相遇,请说明理由。
(2)在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余的高度y(cm)与燃烧时间x(分钟)的关系如下图所示,根据图像提供的信息解答下列问题:
①指出两根蜡烛燃烧前的高度;
②分别求出甲、乙两根蜡烛燃烧时y与x之间的函数关系式;
③x为何值时,甲、乙两根蜡烛在燃烧过程中的高度相等。

查看答案和解析>>

同步练习册答案