精英家教网 > 初中数学 > 题目详情
6.如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.过点A作AF⊥AB,并截取AF=BD,连接DC,DF,CF.
(1)判断△CDF的形状并证明.
(2)若BC=6,AF=2,求AB的长.

分析 (1)理由“ASA”证明△ADF≌△BCD得到DF=CD,∠ADF=∠BCD,再利用∠BCD+∠CDB=90°得到∠CDF=90°,则可判断△CDF为等腰直角三角形;
(2)由△ADF≌△BCD得到AD=BC=6,AF=BD=2,然后计算AD-BD即可.

解答 解:(1)△CDF为等腰直角三角形.理由如下:
∵AF⊥AB,
∴∠DAF=90°,
在△ADF和△BCD中
$\left\{\begin{array}{l}{AF=DB}\\{∠DAF=∠CBD}\\{AB=BC}\end{array}\right.$,
∴△ADF≌△BCD,
∴DF=CD,∠ADF=∠BCD,
∵∠BCD+∠CDB=90°,
∴∠ADF+∠CDB=90°,即∠CDF=90°,
∴△CDF为等腰直角三角形;
(2)∵△ADF≌△BCD,
∴AD=BC=6,AF=BD=2,
∴AB=AD-BD=6-2=4.

点评 本题考查了全等三角形的判定与性质全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.(1)计算(-36)×($\frac{1}{3}$+$\frac{5}{6}$-$\frac{3}{4}$)
(2)计算-14-(1-0.5)×(-1$\frac{1}{3}$)×[2-(-3)2]
(3)解方程4x-7=x+14
(4)解方程1-$\frac{x+3}{2}$=$\frac{2x-1}{5}$
(5)先化简,再求值3(2a2b-3ab2)-(5a2b-4ab2),其中a=2,b=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.在手工制作课上,老师组织七年级2班的学生用硬纸制作圆柱形茶叶筒.七年级2班共有学生50人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身40个或剪筒底120个.
(1)七年级2班有男生、女生各多少人?
(2)原计划男生负责剪筒底,女生负责剪筒身,要求一个筒身配两个筒底,那么每小时剪出的筒身与筒底能配套吗?如果不配套,那么男生应向女生支援多少人时,才能使每小时剪出的筒身与筒底相同.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图.在平面直角坐标系中,点O为坐标原点,抛物线y=$\frac{5}{18}$x2+bx+c与x轴的交点分别为点A、B,与y轴的交点为点C,直线BC的解析式为y=$\frac{1}{3}$x-3.
(1)求抛物线的解析式:
(2)点P为直线BC下方抛物线上一点.连接PB、PC,当PB=PC时.求点P的坐标;
(3)在(2)的条件下,过点P作PN⊥BC于点H,点Q为线段CP上一点,连接BQ、HQ,当∠CQH=∠PQB时.求tan∠CBQ的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在△ABC中,∠C=90°,DE垂直平分AB,E是垂足,交BC于D,DG⊥AD于D,且DG=BD,AC=8,CD=6,求△BDG的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,已知AB=AD,∠ABC=∠ADC.试判断AC与BD的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.
(1)若固定三根木条AB,BC,AD不动,AB=AD=2cm,BC=5cm,如图,量得第四根木条CD=5cm,判断此时∠B与∠D是否相等,并说明理由.
(2)若固定一根木条AB不动,AB=2cm,量得木条CD=5cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A.C.D能构成周长为30cm的三角形,求出木条AD,BC的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,△ABC中,∠B=∠C=∠EDF=α,BD=CF,BE=CD,则下列结论正确的是(  )
A.2α+∠A=180°B.α+∠A=90°C.2α+∠A=90°D.α+∠A=180°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知:y与x-3成正比例,且x=4时y=3.
(1)求y与x之间的函数关系式;
(2)当y=-12时,求x的值.

查看答案和解析>>

同步练习册答案