分析 (1)根据已知条件得到∠1=∠2,证得△OAB≌△OCD,根据全等三角形的性质得到∠OBA=∠ODC,于是得到∠PBD=180°-∠ABO-∠OBD=180°-45°-∠ODC=180°-45°-45°-∠BOP=90°-∠BDP,证得∠PBD+∠BOP=90°,即可得到结论;
(2)同(1)得到∠ABO=∠CDO,求得∠PBD=180°-∠ABO-∠OBD=180°-∠CDO-60°=180°-60°-60°-∠BDP,推出∠PBD+∠BOP=120°-60°=60°,于是得到结论.
解答
解:(1)∠APD=90°,
理由:∵∠1+∠3=∠2+∠3=90°,
∴∠1=∠2,
在△OAB与△ODC中,
$\left\{\begin{array}{l}{OA=OC}\\{∠1=∠2}\\{OB=OD}\end{array}\right.$,
∴△OAB≌△OCD,
∴∠OBA=∠ODC,
∴∠PBD=180°-∠ABO-∠OBD=180°-45°-∠ODC=180°-45°-45°-∠BOP=90°-∠BDP,
∴∠PBD+∠BOP=90°,
∴∠APD=180°-90°=90°.
故答案为:90°;
(2)∠APD=120°,
理由:同(1)得到∠ABO=∠CDO,
∴∠PBD=180°-∠ABO-∠OBD=180°-∠CDO-60°=180°-60°-60°-∠BDP,
∴∠PBD+∠BOP=120°-60°=60°,
∴∠APD=180°-60°=120°.
故答案为:120°.
点评 本题考查了全等三角形的判定和性质,等腰直角三角形的性质,熟练掌握全等三角形的判定定理是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2016-2017学年河南省七年级下学期第一次月考(3月)数学试卷(解析版) 题型:单选题
如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有( )
![]()
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源:2016-2017学年江苏省七年级下学期第一次月考数学试卷(解析版) 题型:填空题
如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=______.
![]()
查看答案和解析>>
科目:初中数学 来源:2016-2017学年江苏省七年级下学期第一次月考数学试卷(解析版) 题型:单选题
如图,在长方形网格中,每个小长方形的长为2,宽为1, A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C个数是( )
![]()
A. 2 B. 4 C. 3 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com