【题目】如图,一般捕鱼船在A处发出求救信号,位于A处正西方向的B处有一艘救援艇决定前去数援,但两船之间有大片暗礁,无法直线到达.救援艇决定马上调整方向,先向北偏东
方以每小时30海里的速度航行,同时捕鱼船向正北低速航行.30分钟后,捕鱼船到达距离A处
海里的D处,此时救援艇在C处测得D处在南偏东
的方向上.
![]()
求C、D两点的距离;
捕鱼船继续低速向北航行,救援艇决定再次调整航向,沿CE方向前去救援,并且捕鱼船和救援艇同达时到E处,若两船航速不变,求
的正弦值.
参考数据:
,
,![]()
科目:初中数学 来源: 题型:
【题目】如图,点E为□ABCD中一点,EA=ED,∠AED=90,点F,G分别为AB,BC上的点,连接DF,AG,AD=AG=DF,且AG⊥DF于点H,连接EG,DG,延长AB,DG相交于点P.
![]()
(1)若AH=6,FH=2,求AE的长;
(2)求证:∠P=45;
(3)若DG=2PG,求证:∠AGE=∠EDG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如图两幅不完整统计图,请根据图中提供的信息解答下列各题.
![]()
(1)m= %,这次共抽取了 名学生进行调查;并补全条形图;
(2)请你估计该校约有 名学生喜爱打篮球;
(3)现学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或画树状图的方法,求抽到一男一女学生的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践:
动手操作:如图1,四边形
是一张矩形纸片,
,
,点
,
分别在
,
边上,且
,连接
,
.将
,
分别沿
,
折叠,点
,
分别落在点
,
处.
![]()
探究展示:
(1)“刻苦小组”发现:
,且
,并展示了如下的证明过程.
证明:在矩形
中,
,
,
.
又∵
,
∴
.
∴
,
.
∵
,
∴
.(依据1)
∴
.
∴
.(依据2)
反思交流:①上述证明过程中的“依据1”与“依据2”分别指什么?
②“勤奋小组”认为:还可以通过证明四边形
是平行四边形获证,请你根据“勤奋小组”的证明思路写出证明过程.
猜想证明:
(2)如图2,折叠过程中,当点
,
在直线
的同侧时,延长
交
于点
,延长
交
于点
,则四边形
是什么特殊四边形?请说明理由.
![]()
联想拓广:
(3)如图3,连接
,
,
.
![]()
①当
时,
的长为________;
②
的长有最大值吗?若有,请你直接写出
长的最大值和此时四边形
的形状;若没有,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在
中,
,动点
从点
出发,沿
以每秒
个单位长度的速度向终点
运动,过
作
,交
于点
,以
为邻边作平行四边形
,同时以
为边向下作正方形
,设点
的运动时间为
秒
.
(1)点
到直线
的距离______________;(用含
的代数式表示)
(2)当点
落在落在
上时,求
的值;
(3)设平行四边形
与正方形
重叠部分的面积为
,求
与
之间的函数关系式,并求出
的最大值.
(4)设
,当
时,直接写出
的取值范围.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线
:
与直线l:
交于x轴上的一点A,和另一点![]()
![]()
求抛物线
的解析式;
点P是抛物线
上的一个动点
点P在A,B两点之间,但不包括A,B两点
于点M,
轴交AB于点N,求MN的最大值;
如图2,将抛物线
绕顶点旋转
后,再作适当平移得到抛物线
,已知抛物线
的顶点E在第一象限的抛物线
上,且抛持线
与抛物线
交于点D,过点D作
轴交抛物线
于点F,过点E作
轴交抛物线
于点G,是否存在这样的抛物线
,使得四边形DFEG为菱形?若存在,请求E点的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y=2x的图象与反比例函数y=
的图象交于点(a,2).
![]()
(1)求a和k的值.
(2)若点P(m,n)在反比例函数图象上,且点P到y轴的距离小于1,请根据图象直接写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CB=CA,∠ACB=90°,点D在边BC上(与点B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB∶S四边形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC.其中所有正确结论的序号是________.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=﹣x2+mx+n交x轴于点A(﹣2,0)和点B,交y轴于点C(0,2).
(1)求抛物线的函数表达式;
(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;
(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com