分析 (1)根据∠A′BD=180°-2∠1计算即可.
(2)由∠A′BD=120°,∠2=∠DBE,可得∠2=$\frac{1}{2}$∠A′BD=60°,
(3)由∠1+∠2=$\frac{1}{2}$∠ABA′+$\frac{1}{2}$∠A′BD=$\frac{1}{2}$(∠ABA′+∠A′BD)计算即可.
解答 解:(1)∵∠1=30°,
∴∠1=∠ABC=30°,.
∴∠A′BD=180°-30°-30°.
(2)∵∠A′BD=120°,∠2=∠DBE,
∴∠2=$\frac{1}{2}$∠A′BD=60°,
∴∠CBE=∠1+∠2=30°+60°=90°.
(3)结论:∠CBE不变.
∵∠1=$\frac{1}{2}$∠ABA′,∠2=$\frac{1}{2}$∠A′BD,∠ABA′+∠A′BD=180°,
∴∠1+∠2=$\frac{1}{2}$∠ABA′+$\frac{1}{2}$∠A′BD
=$\frac{1}{2}$(∠ABA′+∠A′BD)
=$\frac{1}{2}$×180°
=90°.
即∠CBE=90°.
点评 本题考查翻折变换,平角的性质等知识,解题的关键是利用法则不变性解决问题,属于基础题,中考常考题型.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 若2x+3=y-7,则2x+5=y-9 | B. | 若0.25x=-4,则x=-1 | ||
| C. | 若m-2=n+3,则m-n=2+3 | D. | 若-$\frac{1}{3}$y=-1,则y=-3 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{3\sqrt{3}}{2}$ | B. | $\sqrt{3}$ | C. | 3$\sqrt{3}$ | D. | 6$\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com