【题目】已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的概率为
,则
=( )
A.![]()
B.![]()
C.![]()
D.![]()
【答案】C
【解析】解:记“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”为事件M,试验的全部结果构成的长度即为线段CD, 若△APB的最大边是AB”发生的概率为
,
则
=
,
设AD=y,AB=x,则DE=
x,PE=
DE=
x,
则PC=
x+
x=
x,
则PB2=AB2时,
PC2+BC2=PB2=AB2 ,
即(
x)2+y2=x2 ,
即
x2+y2=x2 ,
则y2=
x2 ,
则y=
x,
即
=
,
即
=
,
故选:C.![]()
先明确是一个几何概型中的长度类型,然后求得事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的线段长度,再利用两者的比值即为发生的概率
,从而求出
.
科目:初中数学 来源: 题型:
【题目】直三棱柱ABC﹣A1B1C1中,底面是正三角形,三棱柱的高为
,若P是△A1B1C1中心,且三棱柱的体积为
,则PA与平面ABC所成的角大小是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若存在正常数a,b,使得x∈R有f(x+a)≤f(x)+b恒成立,则称f(x)为“限增函数”.给出下列三个函数:①f(x)=x2+x+1;②
;③f(x)=sin(x2),其中是“限增函数”的是( )
A.①②③
B.②③
C.①③
D.③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,
. ![]()
(1)求证:BC⊥平面ACFE;
(2)点M在线段EF上运动,设平面MAB与平面FCB二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的几何体中,平面ADNM⊥平面ABCD,四边形ABCD是菱形,ADNM是矩形,
,AB=2,AM=1,E是AB的中点. ![]()
(1)求证:平面DEM⊥平面ABM;
(2)在线段AM上是否存在点P,使二面角P﹣EC﹣D的大小为
?若存在,求出AP的长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知f(x)是定义在(0,+∞)上的单调函数,且对任意的x∈(0,+∞),都有f[f(x)﹣log2x]=3,则方程f(x)﹣f′(x)=2的解所在的区间是( )
A.(0,
)
B.(
,1)
C.(1,2)
D.(2,3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某蛋糕店每天制作生日蛋糕若干个,每个生日蛋糕的成本为50元,然后以每个100元的价格出售,如果当天卖不完,剩下的蛋糕作垃圾处理.现需决策此蛋糕店每天应该制作几个生日蛋糕,为此搜集并整理了100天生日蛋糕的日需求量(单位:个),得到如图3所示的柱状图,以100天记录的各需求量的频率作为每天各需求量发生的概率.若蛋糕店一天制作17个生日蛋糕. ![]()
(1)求当天的利润y(单位:元)关于当天需求量n(单位:个,n∈N)的函数解析式;
(2)求当天的利润不低于750元的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA=
,反比例函数y=
(k>0)的图像过CD的中点E.![]()
(1)求k的值;
(2)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,试判断点G是否在反比例函数的图像上,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com