分析 (1)利用面积÷OC可得AO长,进而可得答案;
(2)①首先计算出S的值,再根据矩形的面积表示出O′A的长度,再分两种情况:当向左运动时,当向右运动时,分别求出A′表示的数;
②i、首先根据面积可得OA′的长度,再用OA长减去OA′长可得x的值;
ii、此题分两种情况:当原长方形OABC向左移动时,点D表示的数为$4-\frac{1}{2}x$,点E表示的数为$-\frac{1}{3}x$,再根据题意列出方程;当原长方形OABC向右移动时,点D,E表示的数都是正数,不符合题意.
解答 解:(1)∵长方形OABC的面积为12,OC边长为3,
∴OA=12÷3=4,
∴数轴上点A表示的数为4,
故答案为:4.
(2)①∵S恰好等于原长方形OABC面积的一半,
∴S=6,
∴O′A=6÷3=2,
当向左运动时,如图1,A′表示的数为2
当向右运动时,如图2,
∵O′A′=AO=4,
∴OA′=4+4-2=6,![]()
∴A′表示的数为6,
故答案为:6或2.
②ⅰ.如图1,由题意得:CO•OA′=4,
∵CO=3,
∴OA′=$\frac{4}{3}$,
∴x=4-$\frac{4}{3}$=$\frac{8}{3}$,
故答案为:$\frac{8}{3}$;
ⅱ.如图1,当原长方形OABC向左移动时,点D表示的数为$4-\frac{1}{2}x$,点E表示的数为$-\frac{1}{3}x$,
由题意可得方程:4-$\frac{1}{2}$x-$\frac{1}{3}$x=0,
解得:x=$\frac{24}{5}$,
如图2,当原长方形OABC向右移动时,点D,E表示的数都是正数,不符合题意.
点评 此题主要考查了一元一次方程的应用,数轴,关键是正确理解题意,利用数形结合列出方程,注意要分类讨论,不要漏解.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1+{x}^{2}y-x}{5{x}^{3}-2y+3}$ | B. | $\frac{{x}^{2}y-x-1}{5{x}^{3}-2y-3}$ | ||
| C. | $\frac{{x}^{2}y+x-1}{5{x}^{3}+2y-3}$ | D. | $\frac{{x}^{2}y+x+1}{5{x}^{3}+2y-3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$bca2与-a2bc不是同类项 | B. | $\frac{{m}^{2}n}{5}$不是整式 | ||
| C. | 单项式-x3y2的系数是-1 | D. | 3x2-y+5xy2是二次三项式 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com