精英家教网 > 初中数学 > 题目详情
(2005•江西)如图,△ABC是等边三角形,点D、E、F分别是线段AB、BC、CA上的点,
(1)若AD=BE=CF,问△DEF是等边三角形吗?试证明你的结论;
(2)若△DEF是等边三角形,问AD=BE=CF成立吗?试证明你的结论.

【答案】分析:(1)由SAS易证△ADF≌△BED≌△CFE,所以DF=DE=EF,即△DEF是等边三角形;
(2)先证明∠1+∠2=120°,∠2+∠3=120°.可得∠1=∠3.同理∠3=∠4.则△ADF≌△BED≌△CFE,故能证明AD=BE=CF.
解答:解:(1)△DEF是等边三角形.
证明如下:
∵△ABC是等边三角形,
∴∠A=∠B=∠C,AB=BC=CA,
又∵AD=BE=CF,
∴DB=EC=FA,(2分)
∴△ADF≌△BED≌△CFE,(3分)
∴DF=DE=EF,即△DEF是等边三角形;(4分)

(2)AD=BE=CF成立.
证明如下:
如图,∵△DEF是等边三角形,
∴DE=EF=FD,∠FDE=∠DEF=∠EFD=60°,
∴∠1+∠2=120°,
又∵△ABC是等边三角形,
∴∠A=∠B=∠C=60°,
∴∠2+∠3=120°,
∴∠1=∠3,(6分)
同理∠3=∠4,
∴△ADF≌△BED≌△CFE,(7分)
∴AD=BE=CF.(8分)
点评:本题利用了等边三角形的三边都相等,三个内角相等都是60°,以及全等三角形的判定和性质.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《一次函数》(03)(解析版) 题型:解答题

(2005•江西)如图,直线l1、l2相交于点A,l1与x轴的交点坐标为(-1,0),l2与y轴的交点坐标为(0,-2),结合图象解答下列问题:
(1)求出直线l2表示的一次函数的表达式;
(2)当x为何值时,l1、l2表示的两个一次函数的函数值都大于0.

查看答案和解析>>

科目:初中数学 来源:2005年江西省中考数学试卷(大纲卷)(解析版) 题型:填空题

(2005•江西)如图,一个顶角为40°的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2=    度.

查看答案和解析>>

科目:初中数学 来源:2005年江西省中考数学试卷(大纲卷)(解析版) 题型:填空题

(2005•江西)如图,一轴对称图形画出了它的一半,请你以点画线为对称轴画出它的另一半.

查看答案和解析>>

科目:初中数学 来源:2005年江西省南昌市中考数学试卷(解析版) 题型:解答题

(2005•江西)如图,在边长为2个单位长度的正方形ABCD中,点O、E分别是AD、AB的中点,点F是以点O为圆心,OE长为半径的圆弧与DC的交点,点P是上的动点,连接OP并延长交直线BC于K.
(1)当P从E点沿运动到F时,K运动了多少单位长度?
(2)过点P作所在圆的切线,当该切线不与BC平行时,设它与射线AB、直线BC分别交于M、G,
①当K与B重合时,BG:BM=?
②在P运动过程中,是否存在BG:BM=3的情况?若存在,求出BK的值;若不存在说明理由.

查看答案和解析>>

科目:初中数学 来源:2005年江西省南昌市中考数学试卷(解析版) 题型:解答题

(2005•江西)如图,AB是⊙O的直径,C、E是圆周上关于AB对称的两个不同点,CD∥AB∥EF,BC与AD交于M,AF与BE交于N.
(1)在A、B、C、D、E、F六点中,能构成矩形的四个点有哪些?请一一列出(不要求证明);
(2)求证:四边形AMBN是菱形.

查看答案和解析>>

同步练习册答案