分析 根据DF⊥BE利用垂直的定义以及三角形内角和定理即可得出∠2+∠D=90°,利用等量代换即可得出∠1=∠2,再根据平行线的性质可得出∠2=∠C,进而可得出∠1=∠C,利用平行线的判定定理即可得出AB∥CD.
解答 证明:∵DF⊥BE(已知),![]()
∴∠2+∠D=90°(三角形内角和定理),
∵∠1+∠D=90°(已知),
∴∠1=∠2(等量代换),
∵BE∥CF(已知),
∴∠2=∠C(两直线平行,同位角相等),
∴∠1=∠C(等量代换),
∴AB∥CD(内错角相等,两直线平行).
故答案为:∠D;三角形内角和定理;∠1;∠2;两直线平行,同位角相等;∠C;等量代换;内错角相等,两直线平行.
点评 本题考查了平行线的判定与性质以及三角形内角和定理,熟练掌握平行线的判定与性质定理是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 一个平面截一个球,得到的截面一定是圆 | |
| B. | 一个平面截一个正方体,得到的截面可以是五边形 | |
| C. | 棱柱的截面不可能是圆 | |
| D. | 甲、乙两图中,只有乙才能折成正方体 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (4x-3y)(-3y-4x) | B. | (2x2-y2)(2x2+y2) | C. | (a+b)(-b+a) | D. | (-x+y)(x-y) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com