精英家教网 > 初中数学 > 题目详情
2.已知:如图,∠1+∠D=90°,BE∥FC,且DF⊥BE与点G,并分别与AB、CD交于点F、D.求证:AB∥CD.(完成证明并写出推理依据)
证明:∵DF⊥BE(已知),
∴∠2+∠D=90°(三角形内角和定理),
∵∠1+∠D=90°(已知),
∴∠1=∠2(等量代换),
∵BE∥CF(已知),
∴∠2=∠C(两直线平行,同位角相等),
∴∠1=∠C(等量代换),
∴AB∥CD(内错角相等,两直线平行).

分析 根据DF⊥BE利用垂直的定义以及三角形内角和定理即可得出∠2+∠D=90°,利用等量代换即可得出∠1=∠2,再根据平行线的性质可得出∠2=∠C,进而可得出∠1=∠C,利用平行线的判定定理即可得出AB∥CD.

解答 证明:∵DF⊥BE(已知),
∴∠2+∠D=90°(三角形内角和定理),
∵∠1+∠D=90°(已知),
∴∠1=∠2(等量代换),
∵BE∥CF(已知),
∴∠2=∠C(两直线平行,同位角相等),
∴∠1=∠C(等量代换),
∴AB∥CD(内错角相等,两直线平行).
故答案为:∠D;三角形内角和定理;∠1;∠2;两直线平行,同位角相等;∠C;等量代换;内错角相等,两直线平行.

点评 本题考查了平行线的判定与性质以及三角形内角和定理,熟练掌握平行线的判定与性质定理是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.若$n<\sqrt{11}<n+1$,且n是正整数,则n=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元,并规划投入教育经费逐年增加,2016年在2014年的基础上增加投入教育经费2640万元,设该县这两年投入教育经费的年平均增长率相同,求这两年该县投入教育经费的年平均增长率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.在△ABC中,∠ACB=30°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1
(1)如图1,当点C1在线段CA的延长线时,求∠CC1A1的度数;
(2)已知AB=6,BC=8,
①如图2,连接AA1,CC1,若△CBC1的面积为16,求△ABA1的面积;
②如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转的过程中,点P的对应是点P1,直接写出线段EP1长度的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在平面直角坐标系中,四边形ABCD是平行四边形,线段AD=6,二次函数y=-$\frac{1}{2}$x2-$\frac{1}{6}$x+4与y轴交于A点,与x轴分别交于B点、E点(B点在E点的左侧)
(1)分别求A、B、E点的坐标;
(2)连接AE、OD,请判断△AOE与△AOD是否相似并说明理由;
(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,直接写出F点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下面说法,错误的是(  )
A.一个平面截一个球,得到的截面一定是圆
B.一个平面截一个正方体,得到的截面可以是五边形
C.棱柱的截面不可能是圆
D.甲、乙两图中,只有乙才能折成正方体

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列各式中,不能用平方差公式计算的是(  )
A.(4x-3y)(-3y-4x)B.(2x2-y2)(2x2+y2C.(a+b)(-b+a)D.(-x+y)(x-y)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.化简求值:
①(2x+3y)2-(2x+y)•(2x-y),其中x=$\frac{1}{3}$,y=-$\frac{1}{2}$
②$\frac{{a}^{2}}{a-1}$-a-1,其中a=2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.等腰三角形的两条边长分别是2cm和5cm,则该三角形的周长为(  )
A.9cmB.12cmC.9cm或12cmD.7cm

查看答案和解析>>

同步练习册答案