【题目】如图,在ABCD中,∠ABC=60°,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接DF.
(1)求证:△ABF是等边三角形;
(2)若∠CDF=45°,CF=2,求AB的长度.
![]()
【答案】(1)见解析;(2)![]()
【解析】
(1)根据在ABCD中,∠ABC=60°,可以得到∠DAB的度数,然后根据AF平分∠DAB,可以得到∠FAB的度数,然后等边三角形的判定方法即可得到△ABF是等边三角形;
(2)作FG⊥DC于点G,然后根据直角三角形中30°角所对的直角边等于斜边的一半,可以得到CG、FG的长,然后即可得到DG的长,从而可以得到DC的长,然后即可得到AB的长.
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠DAB+∠ABC=180°,
∵∠ABC=60°,
∴∠DAB=120°,
∵AF平分∠DAB,
∴∠FAB=60°,
∴∠FAB=∠ABF=60°,
∴∠FAB=∠ABF=∠AFB=60°,
∴△ABF是等边三角形;
(2)作FG⊥DC于点G,
![]()
∵四边形ABCD是平行四边形,∠ABC=60°,
∴DC∥AB,DC=AB,
∴∠FCG=∠ABC=60°,
∴∠GFC=30°,
∵CF=2,∠FGC=90°,
∴CG=1,FG=
,
∵∠FDG=45°,∠FGD=90°,
∴∠FDG=∠DFG=45°,
∴DG=FG=
,
∴DC=DG+CG=
,
∴AB=
,
即AB的长度是
.
科目:初中数学 来源: 题型:
【题目】如图,点
是线段
的中点,
是以
为圆心,
长为直径的半圆弧,点
是
上一动点,过点
作射线
的垂线,垂足为
.已知
,
,设
、
两点间的距离为
,
、
两点间的距离为
,
、
两点间的距离为
.
![]()
小丽根据学习函数的经验,分别对函数
和
随自变量
变化而变化的规律进行了探究.下面是小丽的探究过程,请将它补充完整:
(1)按照下表中自变量
的值进行取点、画图、测量,分别得到
和
与
的几组对应值:
| 2 | 3 | 4 | 4.5 | 5 | 5.5 | 6 | 7 | 8 |
| 0 | 2.76 |
| 2.96 | 2.86 | 2.70 | 2.49 | 1.85 | 0 |
| 3.00 | 1.18 | 0 | 0.47 | 0.90 | 1.30 | 1.37 | 2.36 | 3.00 |
经测量,
的值是______;(保留一位小数)
(2)在同一平面直角坐标系
中,描出补全后的表中各组数值所对应的点
和
,并画出函数
、
的图象;
![]()
(3)结合函数图象,解决问题:连接
,当
是等腰三角形时,
的长度约为______
.(结果保留一位小数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,C是
上的一定点,P是弦AB上的一动点,连接PC,过点A作AQ⊥PC交直线PC于点Q.小石根据学习函数的经验,对线段PC,PA,AQ的长度之间的关系进行了探究.(当点P与点A重合时,令AQ=0cm)
下面是小石的探究过程,请补充完整:
(1)对于点P在弦AB上的不同位置,画图、测量,得到了线段PC,PA,AQ的几组值,如表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | 位置8 | 位置9 | |
PC/cm | 4.07 | 3.10 | 2.14 | 1.68 | 1.26 | 0.89 | 0.76 | 1.26 | 2.14 |
PA/cm | 0.00 | 1.00 | 2.00 | 2.50 | 3.00 | 3.54 | 4.00 | 5.00 | 6.00 |
AQ/cm | 0.00 | 0.25 | 0.71 | 1.13 | 1.82 | 3.03 | 4.00 | 3.03 | 2.14 |
在PC,PA,AQ的长度这三个量中,确定 的长度是自变量, 的长度和 的长度都是这个自变量的函数;
(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;
(3)结合函数图象,解决问题:当AQ=PC时,PA的长度约为 cm.(结果保留一位小数)![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=4,E、F是对角线AC上的两个动点,且EF=2,P是正方形四边上的任意一点.若△PEF是等边三角形,则符合条件的P点共有_____个,此时AE的长为_____.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象经过点A(0,﹣4)和B(﹣2,2).
(1)求c的值,并用含a的式子表示b;
(2)当﹣2<x<0时,若二次函数满足y随x的增大而减小,求a的取值范围;
(3)直线AB上有一点C(m,5),将点C向右平移4个单位长度,得到点D,若抛物线与线段CD只有一个公共点,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=x2﹣2mx+m2+m的顶点为A.
(1)当m=1时,直接写出抛物线的对称轴;
(2)若点A在第一象限,且OA=
,求抛物线的解析式;
(3)已知点B(m﹣
,m+1),C(2,2).若抛物线与线段BC有公共点,结合函数图象,直接写出m的取值范围.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,AB=5,BC=4,E是BC边上一点,连接DE,将矩形ABCD沿DE折叠,顶点C恰好落在AB边上点F处,延长DE交AB的延长线于点G.
![]()
(1)求线段BE的长;
(2)连接CG,求证:四边形CDFG是菱形;
(3)如图2,P,Q分别是线段DG,CG上的动点(与端点不重合),且∠CPQ=∠CDP,是否存在这样的点P,使△CPQ是等腰三角形?若存在,请直接写出DP的值,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,在笔山银子岩坡顶
处的同一水平面上有一座移动信号发射塔
,
笔山职中数学兴趣小组的同学在斜坡底
处测得该塔的塔顶
的仰角为
,然后他们沿着坡度为
的斜坡
攀行了
米,在坡顶
处又测得该塔的塔顶
的仰角为
.求:
坡顶
到地面
的距离;
移动信号发射塔
的高度(结果精确到
米).
(参考数据:
,
,
)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在⊙O中按如下步骤作图:
(1)作⊙O的直径AD;
(2)以点D为圆心,DO长为半径画弧,交⊙O于B,C两点;
(3)连接DB,DC,AB,AC,BC.
根据以上作图过程及所作图形,下列四个结论中错误的是( )
![]()
A.∠ABD=90°B.∠BAD=∠CBDC.AD⊥BCD.AC=2CD
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com