【题目】如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB=DE,则下列结论成立的个数是( )
①AB∥DE;②EF∥AD∥BC;③AF=CD;④四边形ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形.![]()
A.2
B.3
C.4
D.5
【答案】D
【解析】解:∵六边形ABCDEF的内角都相等,
∴∠EFA=∠FED=∠FAB=∠ABC=120°,
∵∠DAB=60°,
∴∠DAF=60°,
∴∠EFA+∠DAF=180°,∠DAB+∠ABC=180°,
∴AD∥EF∥CB,故②正确,
∴∠FED+∠EDA=180°,
∴∠EDA=∠ADC=60°,
∴∠EDA=∠DAB,
∴AB∥DE,故①正确,
∵∠FAD=∠EDA,∠CDA=∠BAD,EF∥AD∥BC,
∴四边形EFAD,四边形BCDA是等腰梯形,
∴AF=DE,AB=CD,
∵AB=DE,
∴AF=CD,故③正确,
连接CF与AD交于点O,连接DF、AC、AE、DB、BE.
∵∠CDA=∠DAF,
∴AF∥CD,AF=CD,
∴四边形AFDC是平行四边形,故④正确,
同法可证四边形AEDB是平行四边形,
∴AD与CF,AD与BE互相平分,
∴OF=OC,OE=OB,OA=OD,
∴六边形ABCDEF既是中心对称图形,故⑤正确,
故选D.![]()
【考点精析】利用平行线的判定和平行四边形的判定对题目进行判断即可得到答案,需要熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;两组对边分别平行的四边形是平行四边形:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=1,AB=2![]()
(1)求作⊙O,使它过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法)
(2)在(1)所作的圆中,求出劣弧
的长l
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为( )![]()
A.![]()
B.1
C.![]()
D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1所示,在△ABC中,点O是AC上一点,过点O的直线与AB,BC的延长线分别相交于点M,N.![]()
(1)【问题引入】
若点O是AC的中点,
=
,求
的值;
温馨提示:过点A作MN的平行线交BN的延长线于点G.
(2)若点O是AC上任意一点(不与A,C重合),求证:
=1;
(3)【拓展应用】
如图2所示,点P是△ABC内任意一点,射线AP,BP,CP分别交BC,AC,AB于点D,E,F,若
=
,
=
,求
的值.![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+
x+c与x轴交于A,B两点,与y轴交于丁C,且A(2,0),C(0,﹣4),直线l:y=﹣
x﹣4与x轴交于点D,点P是抛物线y=ax2+
x+c上的一动点,过点P作PE⊥x轴,垂足为E,交直线l于点F.![]()
(1)
试求该抛物线表达式;
(2)如图(1),四边形PCOF是平行四边形,求P点的坐标;
(3)如图(2),过点P作PH⊥y轴,垂足为H,连接AC.![]()
①求证:△ACD是直角三角形;
②试问当P点横坐标为何值时,使得以点P、C、H为顶点的三角形与△ACD相似?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知矩形ABCD(AB<AD).![]()
(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;
①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;
②作∠DAE的平分线交CD于点F;
③连接EF;
(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表: 请结合图表完成下列各题:
组别 | 成绩x分 | 频数(人数) |
第1组 | 50≤x<60 | 6 |
第2组 | 60≤x<70 | 8 |
第3组 | 70≤x<80 | 14 |
第4组 | 80≤x<90 | a |
第5组 | 90≤x<100 | 10 |
![]()
(1)表中a的值为;
(2)频数分布直方图补充完整;
(3)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com