【题目】如图,正方形
的对角线
,
相交于点
.
![]()
![]()
(1) (2)
(1)若点
是
上一点,连接
,过点
作
,垂足为
,
与
相交于点
.求证:
;
(2)若点
在
的延长线上,
于点
,
交
的延长线于点
,其他条件不变结论“
”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.
科目:初中数学 来源: 题型:
【题目】如图,反比例函数
(k<0)的图象经过点A(-1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到了点B’在此反比例函数的图象上,则t的值是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂现在平均每天比原计划多生产 50 台机器,现在生产 600 台机器所需时间与原计划生产 450 台机器所需时间相同.
(1)现在平均每天生产多少台机器;
(2)生产 3000 台机器,现在比原计划提前几天完成.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“2018东台西溪半程马拉松”的赛事共有两项:A、“半程马拉松”、 B、“欢乐跑”。小明参加了该项赛事的志愿者服务工作, 组委会随机将志愿者分配到两个项目组.
(1)小明被分配到“半程马拉松”项目组的概率为________.
(2)为估算本次赛事参加“半程马拉松”的人数,小明对部分参赛选手作如下调查:
调查总人数 | 20 | 50 | 100 | 200 | 500 |
参加“半程马拉松”人数 | 15 | 33 | 72 | 139 | 356 |
参加“半程马拉松”频率 | 0.750 | 0.660 | 0.720 | 0.695 | 0.712 |
①请估算本次赛事参加“半程马拉松”人数的概率为_______.(精确到0.1)
②若本次参赛选手大约有3000人,请你估计参加“半程马拉松”的人数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情境:在等腰直角三角形ABC中,
, 直线
过点
且
,过点
为一锐角顶点作
,且点
在直线
上(不与点
重合),如图1,
与
交于点
,试判断
与
的数量关系,并说明理由.探究展示:小星同学展示出如下正确的解法:
解:
,证明如下:
过点
作
,交
于点![]()
则
为等腰直角三角形![]()
![]()
(依据
)
在
与
中![]()
![]()
(依据
)
![]()
(1)反思交流:上述证明过程中的“依据
”和“依据
”分别是指:
依据
:
依据
:
拓展延伸:(2)在图2中,
与
延长线交于点
,试判断
与
的数量关系,并写出证明过程
(3)在图3中,
与
延长线交于点
,试判断
与
的数量关系,并写出证明过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】元旦期间,某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.
![]()
(1)该顾客最少可得_________元购物券,最多可得_________元购物券;
(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数
和
.
(1)在同一直角坐标系内,画出这两个函数的大致图象;
![]()
(2)直接写出:①函数
与坐标轴围成的图形的面积为_______;
②函数
与坐标轴围成的图形的面积为________;
③这两个函数图象与
轴围成的图形的面积为_________.
(3)若反比例函数
经过这两个函数图象的交点,则k的值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点
,
在反比例函数
(m为常数)的图象上,连接AO并延长与图象的另一支有另一个交点为点C,过点A的直线l与x轴的交点为点
,过点C作CE∥x轴交直线l于点E.
(1)求m的值,并求直线l对应的函数解析式;
(2)求点E的坐标;
(3)过点B作射线BN∥x轴,与AE交于点M (补全图形),求证: ![]()
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE,∠E=50°.
![]()
(1)求证:BD=EC;
(2)求∠BAO的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com